Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Biogerontology ; 25(1): 107-129, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150088

RESUMEN

Frailty syndrome denotes a decreased capacity of the body to maintain the homeostasis and stress of the internal environment, which simultaneously increases the risk of adverse health outcomes in older adults, including disability, hospitalization, falls, and death. To promote healthy aging, we should find strategies to cope with frailty. However, the pathogenesis of frailty syndrome is not yet clear. Recent studies have shown that the diversity, composition, and metabolites of gut microbiota significantly changed in older adults with frailty. In addition, several frailty symptoms were alleviated by adjusting gut microbiota with prebiotics, probiotics, and symbiosis. Therefore, we attempt to explore the pathogenesis of frailty syndrome in older people from gut microbiota and summarize the existing interventions for frailty syndrome targeting gut microbiota, with the aim of providing timely and necessary interventions and assistance for older adults with frailty.


Asunto(s)
Fragilidad , Microbioma Gastrointestinal , Probióticos , Humanos , Anciano , Fragilidad/terapia , Anciano Frágil , Probióticos/uso terapéutico , Prebióticos
2.
Phytopathology ; 114(7): 1447-1457, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38669603

RESUMEN

Sclerotinia sclerotiorum is an economically damaging fungal pathogen that causes Sclerotinia stem rot in legumes, producing enormous yield losses. This pathogen is difficult to control due to its wide host spectrum and ability to produce sclerotia, which are resistant bodies that can remain active for long periods under harsh environmental conditions. Here, the biocontrol methods for the management of S. sclerotiorum in legumes are reviewed. Bacillus strains, which synthesized lipopeptides and volatile organic compounds, showed high efficacies in soybean plants, whereas the highest efficacies for the control of the pathogen in alfalfa and common bean were observed when using Coniothyrium minitans and Streptomyces spp., respectively. The biocontrol efficacies in fields were under 65%, highlighting the lack of strategies to achieve a complete control. Overall, although most studies involved extensive screenings using different biocontrol agent concentrations and application conditions, there is a lack of knowledge regarding the specific antifungal mechanisms, which limits the optimization of the reported methods.


Asunto(s)
Ascomicetos , Fabaceae , Enfermedades de las Plantas , Ascomicetos/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Fabaceae/microbiología , Compuestos Orgánicos Volátiles/metabolismo , Glycine max/microbiología , Bacillus/fisiología , Agentes de Control Biológico , Control Biológico de Vectores/métodos
3.
Int Wound J ; 21(2): e14733, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38339798

RESUMEN

Keloids, pathological scars resulting from skin trauma, have traditionally posed significant clinical management challenges due to their persistence and high recurrence rates. Our research elucidates the pivotal roles of lipids and their derivatives in keloid development, driven by underlying mechanisms of abnormal cell proliferation, apoptosis, and extracellular matrix deposition. Key findings suggest that abnormalities in arachidonic acid (AA) synthesis and non-essential fatty acid synthesis are integral to keloid formation. Further, a complex interplay exists between lipid derivatives, notably butyric acid (BA), prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), and the regulation of hyperfibrosis. Additionally, combinations of docosahexaenoic acid (DHA) with BA and 15-deoxy-Δ12,14-Prostaglandin J2 have exhibited pronounced cytotoxic effects. Among sphingolipids, ceramide (Cer) displayed limited pro-apoptotic effects in keloid fibroblasts (KFBs), whereas sphingosine 1-phosphate (S1P) was found to promote keloid hyperfibrosis, with its analogue, FTY720, demonstrating contrasting benefits. Both Vitamin D and hexadecylphosphorylcholine (HePC) showed potential antifibrotic and antiproliferative properties, suggesting their utility in keloid management. While keloids remain a prevalent concern in clinical practice, this study underscores the promising potential of targeting specific lipid molecules for the advancement of keloid therapeutic strategies.


Asunto(s)
Queloide , Humanos , Queloide/tratamiento farmacológico , Queloide/patología , Matriz Extracelular , Fibrosis , Apoptosis , Lípidos/farmacología , Lípidos/uso terapéutico , Fibroblastos
4.
Biol Chem ; 404(6): 619-631, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-36780323

RESUMEN

MicroRNA (miR)-143-3p is a potential regulatory molecule in myocardial ischemia/reperfusion injury (MI/RI), wherein its expression and pathological effects remains controversial. Thus, a mouse MI/RI and cell hypoxia/reoxygenation (H/R) models were built for clarifying the miR-143-3p's role in MI/RI. Following myocardial ischemia for 30 min, mice underwent reperfusion for 3, 6, 12 and 24 h. It was found miR-143-3p increased in the ischemic heart tissue over time after reperfusion. Cardiomyocytes transfected with miR-143-3p were more susceptible to apoptosis. Mechanistically, miR-143-3p targeted B cell lymphoma 2 (bcl-2). And miR-143-3p inhibition reduced cardiomyocytes apoptosis upon H/R, whereas it was reversed by a specific bcl-2 inhibitor ABT-737. Of note, miR-143-3p inhibition upregulated bcl-2 with better mitochondrial membrane potential (Δψm), reduced cytoplasmic cytochrome c (cyto-c) and caspase proteins, and minimized infarction area in mice upon I/R. Collectively, inhibition of miR-143-3p might alleviate MI/RI via targeting bcl-2 to limit mitochondria-mediated apoptosis. To our knowledge, this study further clarifies the miR-143-3p's pathological role in the early stages of MI/RI, and inhibiting miR-143-3p could be an effective treatment for ischemic myocardial disease.


Asunto(s)
MicroARNs , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Ratones , Animales , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , MicroARNs/metabolismo , Isquemia Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Apoptosis , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Daño por Reperfusión/metabolismo
5.
BMC Musculoskelet Disord ; 24(1): 325, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098516

RESUMEN

AIM: To explore the mechanism of the healing of tendon tissue and anti-adhesion, and to discuss the role of the transforming growth factor-ß3 (TGF-ß3)/cAMP response element binding protein-1 (CREB-1) signaling pathway in the healing process of tendons. METHOD: All mice were divided into four groups of 1, 2, 4, and 8 weeks respectively. Each time group was divided into four treatment groups: the amplification group, the inhibition group, the negative group, and the control group. When the tendon injury model was established, the CREB-1 virus was injected into the tendon injury parts. A series of methods such as gait behaviourism, anatomy, histological examination, immunohistochemical examination and collagen staining were employed to assess the tendon healing and the protein expression of TGF-ß3, CREB-1, Smad3/7 and type I/III collagen (COL-I/III). CREB-1 virus was sent to tendon stem cells to assess the protein expression of TGF-ß1, TGF-ß3, CREB-1, COL-I/III by methods such as immunohistochemistry and Western blot. RESULTS: The amplification group showed better gait behaviourism than the inhibition group in the healing process. The amplification group also had less adhesion than the negative group. Hematoxylin-eosin (HE) staining of tendon tissue sections showed that the number of fibroblasts in the amplification group was less than the inhibition group, and the immunohistochemical results indicated that the expression of TGF-ß3, CREB-1, and Smad7 at each time point was higher than the inhibition group. The expression of COL-I/III and Smad3 in the amplification group was lower than the inhibition group at all time points. The collagen staining indicated that the ratio of type I/III collagen in the amplification group was higher than the negative group at 2,4,8 week. The CREB-1 amplification virus could promote the protein expression of TGF-ß3, CREB-1 and inhibit the protein expression of TGF-ß1 and COL-I/III in the tendon stem cells. CONCLUSION: In the process of tendon injury healing, CREB-1 could promote the secretion of TGF-ß3, so as to promote the tendon healing and have the effect of anti-adhesion in tendons. It might provide new intervention targets for anti-adhesion treatment of tendon injuries.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Traumatismos de los Tendones , Factor de Crecimiento Transformador beta3 , Cicatrización de Heridas , Animales , Ratones , Tendones , Traumatismos de los Tendones/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta3/metabolismo , Ratones Endogámicos C57BL , Masculino , Células Madre , Análisis de la Marcha , Adherencias Tisulares/prevención & control
6.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37511038

RESUMEN

Iron(Fe) is a trace metal element necessary for plant growth, but excess iron is harmful to plants. Natural resistance-associated macrophage proteins (NRAMPs) are important for divalent metal transport in plants. In this study, we isolated the MsNRAMP2 (MN_547960) gene from alfalfa, the perennial legume forage. The expression of MsNRAMP2 is specifically induced by iron excess. Overexpression of MsNRAMP2 conferred transgenic tobacco tolerance to iron excess, while it conferred yeast sensitivity to excess iron. Together with the MsNRAMP2 gene, MsMYB (MN_547959) expression is induced by excess iron. Y1H indicated that the MsMYB protein could bind to the "CTGTTG" cis element of the MsNRAMP2 promoter. The results indicated that MsNRAMP2 has a function in iron transport and its expression might be regulated by MsMYB. The excess iron tolerance ability enhancement of MsNRAMP2 may be involved in iron transport, sequestration, or redistribution.


Asunto(s)
Sobrecarga de Hierro , Nicotiana , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Hierro/metabolismo , Medicago sativa/genética , Sobrecarga de Hierro/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
7.
Clin Immunol ; 241: 109079, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35842211

RESUMEN

OBJECTIVES: To investigate the differentiation of regulatory T cells (Tregs) induced by methylprednisolone (MP) pulse therapy in patients with Systemic Lupus Erythematosus (SLE). METHODS: We enrolled 30 patients with SLE and analyzed peripheral blood mononuclear cells (PBMCs) before and after MP pulse therapy. Peripheral Tregs, apoptosis of PBMCs subsets, and TGFß production by monocytes was quantified by flow cytometry. Proliferation and IFN-γ production of CD4+ T cells were measured. Furthermore, TGFß1 production by human monocyte-derived macrophages (HMDM) stimulated with MP-treated CD4+ T cells were quantified by ELISA. RESULTS: Peripheral Tregs was significantly increased after MP pulse therapy (6.76 ± 1.46% vs. 3.82 ± 1.02%, p < 0.01), with an expansion of Nrp1- induced Tregs (4.54 ± 0.46% vs. 1.75 ± 0.38%, p < 0.01). Proliferation and IFN-γ production of CD4+ T cells were significantly decreased after MP pulse therapy. MP pulse therapy induced CD4+ T cell apoptosis (early apoptosis, 26.34 ± 3.54% vs. 14.81 ± 2.89%, p < 0.01) and TGFß expression on monocytes (6.02% vs. 2.45%, p < 0.01). Furthermore, MP induced CD4+ T cell apoptosis in vitro, which stimulated HMDM to produce TGFß. Moreover, elevated TGFß level in supernatant from HMDM stimulated with MP-treated CD4+ T cells promoted Tregs differentiation. CONCLUSIONS: MP pulse therapy induces CD4+ T cell apoptosis, which promotes monocytes to produce TGFß and further facilitates Tregs differentiation. Newly-differentiated Tregs suppress proliferation and IFN-γ production of CD4+ T cells and contribute to immunoregulatory milieu after MP pulse therapy.


Asunto(s)
Lupus Eritematoso Sistémico , Linfocitos T Reguladores , Apoptosis , Humanos , Leucocitos Mononucleares/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Metilprednisolona/farmacología , Metilprednisolona/uso terapéutico , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
8.
J Shoulder Elbow Surg ; 31(4): 699-710, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34775038

RESUMEN

BACKGROUND: Fascial autografts, which are easily available grafts, have provided a promising option in patients with massive rotator cuff tears. However, no fascial autografts other than the fascia lata have been reported, and the exact healing process of the fascia-to-bone interface is not well understood. The objective of this study is to histologically and biomechanically evaluate the effect of the thoracolumbar fascia (TLF) on fascia-to-bone healing. METHODS: A total of 88 rats were used in this study. Eight rats were killed at the beginning to form an intact control group, and the other rats were divided randomly into 2 groups (40 rats per group): the TLF augmentation group (TLF group) and the repair group (R group). The right supraspinatus was detached, and a 3 × 5 mm defect of the supraspinatus was created. The TLF was used to augment the torn supraspinatus in the TLF group, whereas in the R group, the torn supraspinatus was repaired in only a transosseous manner. Histology and biomechanics were assessed at 1, 2, 4, 8, and 16 weeks postoperatively. RESULTS: The modified tendon maturation score of the TLF group was higher than that of the R group at 8 weeks (23.00 ± 0.71 vs. 24.40 ± 0.89, P = .025) and 16 weeks (24.60 ± 0.55 vs. 26.40 ± 0.55, P ≤ .001). The TLF group showed a rapid vascular reaction, and the peak value appeared at 1 week. Later, the capillary density decreased, and almost no angiogenesis was observed at 8 weeks postoperatively. Immunohistochemistry results demonstrated a significantly higher percentage of collagen I in the TLF group at 4, 8, and 16 weeks (24.78% ± 2.76% vs. 20.67% ± 2.11% at 4 weeks, P = .046; 25.46% ± 1.77% vs. 21.49% ± 2.33% at 8 weeks, P = .026; 34.77% ± 2.25% vs. 30.01% ± 3.17% at 16 weeks, P = .040) postoperatively. Biomechanical tests revealed that the ultimate failure force in the TLF group was significantly higher than that in the R group at the final evaluation (29.13 ± 2.49 N vs. 23.10 ± 3.47 N, P = .022). CONCLUSIONS: The TLF autograft can promote a faster biological healing process and a better fixation strength. It could be used as an alternative reinforcement or bridging patch when the fascia lata is not appropriate or available for superior capsule reconstruction (SCR).


Asunto(s)
Lesiones del Manguito de los Rotadores , Animales , Autoinjertos/patología , Fenómenos Biomecánicos , Fascia Lata/trasplante , Humanos , Ratas , Manguito de los Rotadores/patología , Manguito de los Rotadores/cirugía , Lesiones del Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/cirugía , Trasplante Autólogo
9.
Chin J Traumatol ; 24(6): 360-367, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34696976

RESUMEN

PURPOSE: To observe the changes of gait behavior and the expression of wound healing factors of transforming growth factor-ß1 (TGF-ß1), TGF-ß3 and cAMP response element binding protein-1 (CREB-1) during the healing of Achilles tendon in a rat model, and to investigate whether gait analysis can be used to evaluate the tendon healing. METHODS: Achilles tendon of 40 healthy male Sprague-Dawley rats were transected and sutured to establish the Achilles tendon injury (ATI) model. They were randomly divided into 4 groups based on the observational time point at 1, 2, 4 and 6 weeks after injury (n = 10 for each group). Before modeling, 9 rats were randomly selected for CatWalk gait analysis, which contained step cycle, single stance time and average speed. Data were recorded as the normal controls. After then, ATI models were established in the left hind limbs of the all 40 rats (ATI group), while the right hind limbs were only cut and sutured without injury of the Achilles tendon (sham operation group). At 1, 2, 4 and 6 weeks after injury, the gait behavior of the corresponding group of rats (n = 9) as observed and recorded by CatWalk platform. After then, the rats were sacrificed and Achilles tendon of both limbs was harvested. The tendon healing was observed by gross anatomy and histological examination, and the protein and mRNA expression of TGF-ß1, TGF-ß3, CREB-1 were observed by immunohistochemistry and qPCR. The results of tendon gross grading were analyzed by Wilcoxon rank sum test, and other data were analyzed by one-way analysis of variance among multiple groups. RESULTS: Compared with normal controls, all gait indexes (step cycle, single stance time and average speed) were greatly affected following ATI, which however improved with time. The step cycle was significantly lower at 1, 2 and 4 weeks after ATI (compared with normal controls, all p < 0.05), but almost returned to the normal level at 6 weeks ((0.694 ± 0.102) vs. (0.503 ± 0.094) s, p > 0.05). The single stance time of the ATI group was significantly shorter at 1 and 2 weeks after operation ((0.078 ± 0.010) s at 1 week, (0.078 ± 0.020) s at 2 weeks, all p < 0.001) and revealed no significant difference at 4 weeks (p = 0.120). The average speed of ATI group at 1, 2, 4, 6 weeks was significantly lower than that in the normal control group (all p < 0.001). Gross observation showed that the grade of local scar adhesion in ATI group increased significantly at 2, 4 and 6 weeks, compared with the sham operation group (all p < 0.001). Extensive adhesion was formed at 6 weeks after ATI. The results of HE staining showed that the number of fibroblast increased gradually and arranged more orderly in ATI group at 1, 2 and 4 weeks (all p < 0.001), and decreased at 6 weeks, but it was still significantly higher than that of the sham operation group (p < 0.001). Immunohistochemistry showed that the positive expression of TGF-ß1, TGF-ß3, CREB-1 in ATI group was higher than that in the sham operation group at 4 time points (all p < 0.05), which reached the peak at 2 weeks after operation and decreased at 4 weeks (p = 0.002, p < 0.001, p = 0.041, respectively). The results of qPCR suggested that the mRNA expression of TGF-ß1, TGF-ß3, CREB-1 in ATI group was higher than that in the sham operation group at all-time points (all p < 0.05), which reached the peak at 2 weeks after operation, decreased at 4 weeks, and significantly decreased at 6 weeks (all p < 0.001). CONCLUSION: Gait behavior indexes are associated with Achilles tendon healing. The study gives an insight of TGF-ß1, TGF-ß3, CREB-1 changes in the coursing of Achilles tendon healing and these cytokines may be able to be used to regulate the Achilles tendon healing.


Asunto(s)
Tendón Calcáneo , Animales , Proteína de Unión a CREB , Análisis de la Marcha , Masculino , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta3 , Cicatrización de Heridas
10.
J Autoimmun ; 107: 102360, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31806420

RESUMEN

OBJECTIVE: Gut dysbiosis has been reported implicated in ankylosing spondylitis (AS), a common chronic inflammatory disease mainly affects sacroiliac joints and spine. Utilizing deep sequencing on the feces of untreated AS patients, our study aimed at providing an in-depth understanding of AS gut microbiota. METHODS: We analyzed the fecal metagenome of 85 untreated AS patients and 62 healthy controls by metagenomic shotgun sequencing, and 23 post-treatment feces of those AS patients were collected for comparison. Comparative analyses among different cohorts including AS, rheumatoid arthritis and Behcet's disease were performed to uncover some common signatures related to inflammatory arthritis. Molecular mimicry of a microbial peptide was also demonstrated by ELISpot assay. RESULTS: We identified AS-enriched species including Bacteroides coprophilus, Parabacteroides distasonis, Eubacterium siraeum, Acidaminococcus fermentans and Prevotella copri. Pathway analysis revealed increased oxidative phosphorylation, lipopolysaccharide biosynthesis and glycosaminoglycan degradation in AS gut microbiota. Microbial signatures of AS gut selected by random forest model showed high distinguishing accuracy. Some common signatures related to autoimmunity, such as Bacteroides fragilis and type III secretion system (T3SS), were also found. Finally, in vitro experiments demonstrated an increased amount of IFN-γ producing cells triggered by a bacterial peptide of AS-enriched species, mimicking type II collagen. CONCLUSIONS: These findings collectively indicate that gut microbiota was perturbed in untreated AS patients with diagnostic potential, and some AS-enriched species might be triggers of autoimmunity by molecular mimicry. Additionally, different inflammatory arthritis shared some common microbial signatures.


Asunto(s)
Microbioma Gastrointestinal , Mediadores de Inflamación/metabolismo , Metagenoma , Metagenómica , Espondilitis Anquilosante/etiología , Espondilitis Anquilosante/metabolismo , Autoinmunidad , Estudios de Casos y Controles , Susceptibilidad a Enfermedades , Disbiosis , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/inmunología , Humanos , Metagenómica/métodos , Espondilitis Anquilosante/patología
11.
Cancer Cell Int ; 20: 510, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088218

RESUMEN

BACKGROUND: Due to the high morbidity and poor clinical outcomes, early predictive and prognostic biomarker identification is desiderated in colorectal cancer (CRC). As a homologue of the Deleted in Colorectal Cancer (DCC) gene, the role of Neogenin-1 (NEO1) in CRC remained unveiled. This study was designed to probe into the effects and potential function of NEO1 in CRC. METHODS: Online databases, Gene Set Enrichment Analysis (GSEA), quantitative real-time PCR and western blotting were used to evaluate NEO1 expression in colorectal cancer tissues. Survival analysis was performed to predict the prognosis of CRC patients based on NEO1 expression level. Then, cell proliferation was detected by colony formation and Cell Counting Kit 8 (CCK-8) assays. CRC cell migration and invasion were examined by transwell assays. Finally, we utilized the Gene Set Variation Analysis (GSVA) and GSEA to dig the potential mechanisms of NEO1 in CRC. RESULTS: Oncomine database and The Cancer Genome Atlas (TCGA) database showed that NEO1 was down-regulated in CRC. Further results validated that NEO1 mRNA and protein expression were both significantly lower in CRC tumor tissues than in the adjacent tissues in our clinical samples. NEO1 expression was decreased with the progression of CRC. Survival and other clinical characteristic analyses exhibited that low NEO1 expression was related with poor prognosis. A gain-of-function study showed that overexpression of NEO1 restrained proliferation, migration and invasion of CRC cells while a loss-of-function showed the opposite effects. Finally, functional pathway enrichment analysis revealed that NEO1 low expression samples were enriched in inflammation-related signaling pathways, EMT and angiogenesis. CONCLUSION: A tumor suppressor gene NEO1 was identified and verified to be correlated with the prognosis and progression of CRC, which could serve as a prognostic biomarker for CRC patients.

12.
Mol Cell Probes ; 54: 101652, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32866660

RESUMEN

Non-small-cell lung carcinoma (NSCLC) accounts for approximately 80% of lung cancers with a high metastatic potential. Elucidating the mechanism of NSCLC metastasis will provide new promising targets for NSCLC therapy and benefit its prognosis. Plasmacytoma variant translocation 1 (PVT1) has been proven to be overexpressed in NSCLC. Although the oncogenic role of PVT1 in NSCLC has been reported, its mechanism remains unclear. Here, we verified that the knockdown of PVT1 inhibited NSCLC cell migration and invasion, and that its inhibitory role on A549 cells and H1299 cells was antagonized by interleukin-6 (IL-6) treatment. The results revealed that PVT1 regulates IL-6 by sponging miR-760 and identified the binding site of miR-760 in the 3'-UTR of IL-6. In conclusion, a new mechanism was revealed, wherein PVT1 regulates NSCLC cell migration and invasion via miR-760/IL-6, suggesting PVT1/miR-760/IL-6 as promising prognostic biomarkers and therapeutic targets for NSCLC metastasis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Movimiento Celular/genética , Interleucina-6/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Regiones no Traducidas 3'/genética , Secuencia de Bases , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Interleucina-6/metabolismo , MicroARNs/genética , Invasividad Neoplásica , ARN Largo no Codificante/genética
13.
Inorg Chem ; 59(7): 4711-4719, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32191452

RESUMEN

High-capacity germanium-based anode materials are alternative materials for outstanding electrochemical performance lithium-ion batteries (LIBs), but severe volume variation and pulverization problems during charging-discharging processes can seriously affect their electrochemical performance. In addressing this challenge, a simple strategy was used to prepare the self-assembled GeOX/Ti3C2TX composite in which the GeOX nanoparticles can grow directly on Ti3C2TX layers. Nanoscale GeOX uniformly renucleates on the surface and interlayers of Ti3C2TX, forming the stable multiphase structure, which guarantees its excellent electrochemical performance. Electrochemical evaluation has shown that the rate capability and reversibility of GeOX/Ti3C2TX are both greatly improved, which delivers a reversible discharge specific capacity of above 1400 mAh g-1 (at 100 mA g-1) and a reversible specific capacity of 900 mAh g-1 after 50 cycles while it still maintains a stable specific capacity of 725 mAh g-1 at 5000 mA g-1. Furthermore, the composite exhibits an exceptionally superior rate capability, making it a good electrochemical performance anode for LIBs.

14.
Cell Commun Signal ; 16(1): 42, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-30029643

RESUMEN

BACKGROUND: Chronic muscle injury is characteristics of fatty infiltration and fibrosis. Recently, fibro/adipogenic progenitors (FAPs) were found to be indispensable for muscular regeneration while were also responsible for fibrosis and fatty infiltration in muscle injury. Many myokines have been proven to regulate the adipose or cell proliferation. Because the fate of FAPs is largely dependent on microenvironment and the regulation of myokines on FAPs is still unclear. We screened the potential myokines and found Interleukin-15 (IL-15) may regulate the fatty infiltration in muscle injury. In this study, we investigated how IL-15 regulated FAPs in muscle injury and the effect on muscle regeneration. METHODS: Cell proliferation assay, western blots, qRT-PCR, immunohistochemistry, flow cytometric analysis were performed to investigate the effect of IL-15 on proliferation and adipogensis of FAPs. Acute muscle injury was induced by injection of glycerol or cardiotoxin to analyze how IL-15 effected on FAPs in vivo and its function on fatty infiltration or muscle regeneration. RESULTS: We identified that the expression of IL-15 in injured muscle was negatively associated with fatty infiltration. IL-15 can stimulate the proliferation of FAPs and prevent the adipogenesis of FAPs in vitro and in vivo. The growth of FAPs caused by IL-15 was mediated through JAK-STAT pathway. In addition, desert hedgehog pathway may participate in IL-15 inhibiting adipogenesis of FAPs. Our study showed IL-15 can cause the fibrosis after muscle damage and promote the myofiber regeneration. Finally, the expression of IL-15 was positively associated with severity of fibrosis and number of FAPs in patients with chronic rotator cuff tear. CONCLUSIONS: These findings supported the potential role of IL-15 as a modulator on fate of FAPs in injured muscle and as a novel therapy for chronic muscle injury.


Asunto(s)
Adipogénesis , Interleucina-15/metabolismo , Células Madre Mesenquimatosas/citología , Músculos/fisiología , Regeneración , Adipocitos/citología , Animales , Diferenciación Celular , Regulación hacia Abajo , Humanos , Quinasas Janus/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción STAT/metabolismo
15.
Arch Microbiol ; 200(3): 423-429, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29184975

RESUMEN

A novel Gram-staining positive, moderately halophilic, endospore-forming, motile, rod-shaped and strictly aerobic strain, designated YIM 93565T, was isolated from a salt lake in Xinjiang province of China and subjected to a polyphasic taxonomic study. Strain YIM 93565T grew in the range of pH 6.0-9.0 (optimum pH 7.0), 10-45 °C (optimum 35-40 °C) and at salinities of 2-24% (w/v) NaCl (optimum 7-10%). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YIM 93565T clustered with members of the genera Gracilibacillus and form a clade with Gracilibacillus bigeumensis KCTC 13130T (95.6% similarity) and Gracilibacillus halophilus DSM 17856T (94.9%), which was well separated from others. The DNA G + C content of this novel strain was 36.8 mol%. The major fatty acids were anteiso-C15:0, iso-C15:0, C16:0 and anteiso-C17:0 and its polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, one unidentified glycolipid and two unidentified phospholipids. The predominant menaquinone was MK-7. The cell-wall peptidoglycan was based on meso-diaminopimelic acid. Based on the results of phylogenetic, physiological and chemotaxonomic comparative analyses, the isolate is assigned to a novel species of the genus Gracilibacillus, for which the name Gracilibacillus eburneus sp. nov. is proposed, with the type strain YIM 93565T (= DSM 23710T = CCTCC AB 2013249T).


Asunto(s)
Bacillaceae/clasificación , Bacillaceae/genética , Bacillaceae/aislamiento & purificación , Composición de Base , Pared Celular/química , China , ADN Bacteriano/genética , Ácido Diaminopimélico/análisis , Ácido Diaminopimélico/química , Ácidos Grasos/análisis , Ácidos Grasos/química , Lagos/microbiología , Tipificación Molecular , Fosfolípidos/análisis , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Tolerancia a la Sal , Microbiología del Agua
16.
Small ; 13(7)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27925395

RESUMEN

The diverse biological effects of nanomaterials form the basis for their applications in biomedicine but also cause safety issues. Induction of autophagy is a cellular response after nanoparticles exposure. It may be beneficial in some circumstances, yet autophagy-mediated toxicity raises an alarming concern. Previously, it has been reported that upconversion nanoparticles (UCNs) elicit liver damage, with autophagy contributing most of this toxicity. However, the detailed mechanism is unclear. This study reveals persistent presence of enlarged autolysosomes in hepatocytes after exposure to UCNs and SiO2 nanoparticles both in vitro and in vivo. This phenomenon is due to anomaly in the autophagy termination process named autophagic lysosome reformation (ALR). Phosphatidylinositol 4-phosphate (PI(4)P) relocates onto autolysosome membrane, which is a key event of ALR. PI(4)P is then converted into phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) by phosphatidylinositol-4-phosphate 5-kinase. Clathrin is subsequently recruited by PI(4,5)P2 and leads to tubule budding of ALR. Yet it is observed that PI(4)P cannot be converted in nanoparticle-treated hepatocytes cells. Exogenous supplement of PI(4,5)P2 suppresses the enlarged autolysosomes in vitro. Abolishment of these enlarged autolysosomes by autophagy inhibitor relieves the hepatotoxicity of UCNs in vivo. The results provide evidence for disrupted ALR in nanoparticle-treated hepatocytes, suggesting that the termination of nanoparticle-induced autophagy is of equal importance as the initiation.


Asunto(s)
Autofagia , Hepatocitos/citología , Hepatocitos/metabolismo , Lisosomas/metabolismo , Nanopartículas/química , Animales , Autofagia/efectos de los fármacos , Células Cultivadas , Hepatocitos/efectos de los fármacos , Hígado/metabolismo , Lisosomas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Nanopartículas/toxicidad , Fosfatos de Fosfatidilinositol/metabolismo
17.
Cancer Cell Int ; 17: 9, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28070171

RESUMEN

BACKGROUND: Casticin, the flavonoid extracted from Vitex rotundifolia L, exerts various biological effects, including anti-inflammatory and anti-cancer activity. The aim of this study is to investigate the effects and mechanisms of casticin in human gallbladder cancer cells. METHODS: Human NOZ and SGC996 cells were used to perform the experiments. CCK-8 assay and colony formation assay were performed to evaluate cell viability. Cell cycle analyses and annexin V/PI staining assay for apoptosis were measured using flow cytometry. Western blot analysis was used to evaluate the changes in protein expression, and the effect of casticin treatment in vivo was experimented with xenografted tumors. RESULTS: In this study, we found that casticin significantly inhibited gallbladder cancer cell proliferation in a dose- and time-dependent manner. Casticin also induced G0/G1 arrest and mitochondrial-related apoptosis by upregulating Bax, cleaved caspase-3, cleaved caspase-9 and cleaved poly ADP-ribose polymerase expression, and by downregulating Bcl-2 expression. Moreover, casticin induced cycle arrest and apoptosis by upregulating p27 and downregulating cyclinD1/cyclin-dependent kinase4 and phosphorylated protein kinase B. In vivo, casticin inhibited tumor growth. CONCLUSION: Casticin induces G0/G1 arrest and apoptosis in gallbladder cancer, suggesting that casticin might represent a novel and effective agent against gallbladder cancer.

18.
Small ; 12(41): 5759-5768, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27593892

RESUMEN

Many nanomaterials are reported to disrupt lysosomal function and homeostasis, but how cells sense and then respond to nanomaterial-elicited lysosome stress is poorly understood. Nucleus translocation of transcription factor EB (TFEB) plays critical roles in lysosome biogenesis following lysosome stress induced by starvation. The authors previously reported massive cellular vacuolization, along with autophagy induction, in cells treated with rare earth oxide (REO) nanoparticles. Here, the authors identify these giant cellular vacuoles as abnormally enlarged and alkalinized endo/lysosomes whose formation is dependent on macropinocytosis. This vacuolization causes deactivation of mammalian target of rapamycin (mTOR), a TFEB-interacting kinase that resides on the lysosome membrane. Subsequently, TFEB is dephosphorylated at serine 142 and translocated into cell nucleus. This nucleus translocation of TFEB is observed only in vacuolated cells and it is critical for maintaining lysosome homeostasis after REO nanoparticle treatment, as knock-down of TFEB gene significantly compromises lysosome function and enhances cell death in nanoparticle-treated cells. Our results reveal that cellular vacuolization, which is commonly observed in cells treated with REOs and other nanomaterials, represents a condition of profound lysosome stress, and cells sense and respond to this stress by facilitating mTOR-dependent TFEB nucleus translocation in an effort to restore lysosome homeostasis.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Núcleo Celular/metabolismo , Lisosomas/metabolismo , Metales de Tierras Raras/química , Nanopartículas/química , Óxidos/química , Serina-Treonina Quinasas TOR/metabolismo , Vacuolas/metabolismo , Álcalis/química , Supervivencia Celular , Endosomas/metabolismo , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Biológicos , Pinocitosis , Transporte de Proteínas
19.
Opt Express ; 24(25): 28519-28528, 2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27958496

RESUMEN

We realized a polarization-independent split-ratio-tunable optical beam splitter supporting two input and output ports through a stable interferometer. By adjusting the angle of a half-wave plate in the interferometer, we can tune the beam splitter reflectivities for both input ports from 0 to 1, regardless of the input light polarization. High-fidelity polarization-preserving transmission from input to output ports was verified by complete quantum process tomography. Nearly optimal interference effects at the beam splitter with various split ratios were observed by two-photon Hong-Ou-Mandel interference for different input polarization states. Such a beam splitter could find a variety of applications in classical and quantum optical technologies.

20.
Int J Syst Evol Microbiol ; 66(10): 4016-4021, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27411921

RESUMEN

A bacterial strain, RS-LYSO-3T, was isolated from tobacco-cultivated soil, collected near Chuxiong, Yunnan province, southwestern China. RS-LYSO-3T could effectively inhibit the invasion of powdery mildew on tobacco. The colonies of RS-LYSO-3T were pale yellow, and its cells were Gram-stain-negative and rod-shaped, with 68 mol% DNA G+C content. Gene sequence analysis for its 16S rRNA gene revealed the highest similarity (97.78 %) with that of Lysobacter spongiicolaKMM 329T. Chemotaxonomic data showed that RS-LYSO-3T possesses a quinone system with Q-8, and iso-C16 : 0, summed feature 9 and iso-C15 : 0 as the predominant fatty acids, all of which support the affiliation of RS-LYSO-3T to the genus Lysobacter. The results of DNA-DNA hybridization, physiological and biochemical tests clearly proved that RS-LYSO-3T is a representative of a novel species of the genus Lysobacter, for which the name Lysobacter erysipheresistens sp. nov. is proposed. The type strain is RS-LYSO-3T (=CCIC 23922T=JCM 31042T).


Asunto(s)
Lysobacter/clasificación , Nicotiana , Filogenia , Microbiología del Suelo , Antibiosis , Ascomicetos , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Lysobacter/genética , Lysobacter/aislamiento & purificación , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda