Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Clin Sci (Lond) ; 135(20): 2429-2444, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34668009

RESUMEN

Osteogenic factors, such as osteoprotegerin (OPG), are protective against vascular calcification. However, OPG is also positively associated with cardiovascular damage, particularly in pulmonary hypertension, possibly through processes beyond effects on calcification. In the present study, we focused on calcification-independent vascular effects of OPG through activation of syndecan-1 and NADPH oxidases (Noxs) 1 and 4. Isolated resistance arteries from Wistar-Kyoto (WKY) rats, exposed to exogenous OPG, studied by myography exhibited endothelial and smooth muscle dysfunction. OPG decreased nitric oxide (NO) production, eNOS activation and increased reactive oxygen species (ROS) production in endothelial cells. In VSMCs, OPG increased ROS production, H2O2/peroxynitrite levels and activation of Rho kinase and myosin light chain. OPG vascular and redox effects were also inhibited by the syndecan-1 inhibitor synstatin (SSNT). Additionally, heparinase and chondroitinase abolished OPG effects on VSMCs-ROS production, confirming syndecan-1 as OPG molecular partner and suggesting that OPG binds to heparan/chondroitin sulphate chains of syndecan-1. OPG-induced ROS production was abrogated by NoxA1ds (Nox1 inhibitor) and GKT137831 (dual Nox1/Nox4 inhibitor). Tempol (SOD mimetic) inhibited vascular dysfunction induced by OPG. In addition, we studied arteries from Nox1 and Nox4 knockout (KO) mice. Nox1 and Nox4 KO abrogated OPG-induced vascular dysfunction. Vascular dysfunction elicited by OPG is mediated by a complex signalling cascade involving syndecan-1, Nox1 and Nox4. Our data identify novel molecular mechanisms beyond calcification for OPG, which may underlie vascular injurious effects of osteogenic factors in conditions such as hypertension and/or diabetes.


Asunto(s)
Hemodinámica/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , NADPH Oxidasas/metabolismo , Osteoprotegerina/toxicidad , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Sindecano-1/metabolismo , Animales , Células Cultivadas , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/enzimología , Arterias Mesentéricas/fisiopatología , Ratones Endogámicos C57BL , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/enzimología , NADPH Oxidasa 1/genética , NADPH Oxidasa 1/metabolismo , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , NADPH Oxidasas/genética , Ratas Endogámicas WKY , Transducción de Señal
2.
Circ Res ; 106(8): 1363-73, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20339118

RESUMEN

RATIONALE: Although Nox5 (Nox2 homolog) has been identified in the vasculature, its regulation and functional significance remain unclear. OBJECTIVES: We sought to test whether vasoactive agents regulate Nox5 through Ca(2+)/calmodulin-dependent processes and whether Ca(2+)-sensitive Nox5, associated with Rac-1, generates superoxide (O(2)(*-)) and activates growth and inflammatory responses via mitogen-activated protein kinases in human endothelial cells (ECs). METHODS AND RESULTS: Cultured ECs, exposed to angiotensin II (Ang II) and endothelin (ET)-1 in the absence and presence of diltiazem (Ca(2+) channel blocker), calmidazolium (calmodulin inhibitor), and EHT1864 (Rac-1 inhibitor), were studied. Nox5 was downregulated with small interfering RNA. Ang II and ET-1 increased Nox5 expression (mRNA and protein). Effects were inhibited by actinomycin D and cycloheximide and blunted by diltiazem, calmidazolium and low extracellular Ca(2+) ([Ca(2+)](e)). Ang II and ET-1 activated NADPH oxidase, an effect blocked by low [Ca(2+)](e), but not by EHT1864. Nox5 knockdown abrogated agonist-stimulated O(2)(*-) production and inhibited phosphorylation of extracellular signal-regulated kinase (ERK)1/2, but not p38 MAPK (mitogen-activated protein kinase) or SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase). Nox5 small interfering RNA blunted Ang II-induced, but not ET-1-induced, upregulation of proliferating-cell nuclear antigen and vascular cell adhesion molecule-1, important in growth and inflammation. CONCLUSIONS: Human ECs possess functionally active Nox5, regulated by Ang II and ET-1 through Ca(2+)/calmodulin-dependent, Rac-1-independent mechanisms. Nox5 activation by Ang II and ET-1 induces ROS generation and ERK1/2 phosphorylation. Nox5 is involved in ERK1/2-regulated growth and inflammatory signaling by Ang II but not by ET-1. We elucidate novel mechanisms whereby vasoactive peptides regulate Nox5 in human ECs and demonstrate differential Nox5-mediated functional responses by Ang II and ET-1. Such phenomena link Ca(2+)/calmodulin to Nox5 signaling, potentially important in the regulation of endothelial function by Ang II and ET-1.


Asunto(s)
Angiotensina II/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Células Endoteliales/enzimología , Endotelina-1/metabolismo , Proteínas de la Membrana/metabolismo , NADPH Oxidasas/metabolismo , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Calmodulina/antagonistas & inhibidores , Células Cultivadas , Diltiazem/farmacología , Células Endoteliales/efectos de los fármacos , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica , Humanos , Imidazoles/farmacología , Inflamación/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , NADPH Oxidasa 5 , NADPH Oxidasas/genética , Fosforilación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Pironas/farmacología , Quinolinas/farmacología , Interferencia de ARN , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Superóxidos/metabolismo , Factores de Tiempo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteína de Unión al GTP rac1/antagonistas & inhibidores
3.
Clin Sci (Lond) ; 120(4): 131-41, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21039341

RESUMEN

The Noxes (NADPH oxidases) are a family of ROS (reactive oxygen species)-generating enzymes. Of the seven family members, four have been identified as important sources of ROS in the vasculature: Nox1, Nox2, Nox4 and Nox5. Although Nox isoforms can be influenced by the same stimulus and co-localize in cellular compartments, their tissue distribution, subcellular regulation, requirement for cofactors and NADPH oxidase subunits and ability to generate specific ROS differ, which may help to understand the multiplicity of biological functions of these oxidases. Nox4 and Nox5 are the newest isoforms identified in the vasculature. Nox4 is the major isoform expressed in renal cells and appear to produce primarily H2O2. The Nox5 isoform produces ROS in response to increased levels of intracellular Ca2+ and does not require the other NADPH oxidase subunits for its activation. The present review focuses on these unique Noxes, Nox4 and Nox5, and provides novel concepts related to the regulation and interaction in the vasculature, and discusses new potential roles for these isoforms in vascular biology.


Asunto(s)
Endotelio Vascular/metabolismo , Proteínas de la Membrana/fisiología , Músculo Liso Vascular/metabolismo , NADPH Oxidasas/fisiología , Humanos , NADPH Oxidasa 4 , NADPH Oxidasa 5 , Especies Reactivas de Oxígeno/metabolismo
4.
J Am Soc Hypertens ; 6(3): 169-78, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22341198

RESUMEN

Little is known about vascular MAPK regulation in response to mechanical strain. Whether mechanically-sensitive pathways are altered in hypertension is unclear. We examined effects of stretch and Ang II on activation of p38MAPK in vascular smooth muscle cells (VSMC) from WKY and SHR. The role of c-Src and redox-sensitive pathways in stretch-induced effects were examined. VSMC from mesenteric arteries were plated onto flexible silastic plates and exposed to acute or chronic cyclic stretch (10%, 1 Hz) with or without Ang II (0.1 uM). Acute stretch stimulated p38MAPK activation in WKY and SHR, independently of c-Src and reactive oxygen species (ROS), since PP2 (c-Src inhibitor) and apocynin (NADPH oxidase inhibitor), failed to alter stretch-mediated p38MAPK. Chronic stretch blunted p38MAPK phosphorylation in WKY and increased phosphorylation in SHR. Stretch, in the presence of Ang II, induced an increase in procollagen-1 expression. This was blocked by SB203580 (p38MAPK inhibitor). Accordingly, vascular p38MAPK is a mechano-sensitive MAPK, differentially regulated by acute and chronic stretch in WKY and SHR. Functionally, stretch and Ang II, amplify profibrotic responses in a p38MAPK-dependent manner, responses that are perturbed in SHR. Such molecular process may influence vascular fibrosis in hypertension and appear to be independent of c-Src and ROS.


Asunto(s)
Angiotensina II/metabolismo , Hipertensión/metabolismo , Complejos Multienzimáticos/metabolismo , Músculo Liso Vascular/fisiopatología , NADH NADPH Oxidorreductasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Resistencia Vascular/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Western Blotting , Proteína Tirosina Quinasa CSK , Células Cultivadas , Modelos Animales de Enfermedad , Activación Enzimática , Hipertensión/patología , Hipertensión/fisiopatología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Transducción de Señal , Estrés Mecánico , Vasoconstricción/fisiología , Familia-src Quinasas
5.
Hypertension ; 56(3): 453-62, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20696983

RESUMEN

Arterial calcification, common in vascular diseases, involves vascular smooth muscle cell (VSMC) transformation to an osteoblast phenotype. Clinical studies suggest that magnesium may prevent this, but mechanisms are unclear. We assessed whether increasing magnesium levels reduce VSMC calcification and differentiation and questioned the role of the Mg(2+) transporter, transient receptor potential melastatin (TRPM)7 cation channels in this process. Rat VSMCs were exposed to calcification medium in the absence and presence of magnesium (2.0 to 3.0 mmol/L) or 2-aminoethoxy-diphenylborate (2-APB) (TRPM7 inhibitor). VSMCs from mice with genetically low (MgL) or high-normal (MgH) [Mg(2+)](i) were also studied. Calcification was assessed by von Kossa staining. Expression of osteocalcin, osteopontin, bone morphogenetic protein (BMP)-2, BMP-4, BMP-7, and matrix Gla protein and activity of TRPM7 (cytosol:membrane translocation) were determined by immunoblotting. Calcification medium induced osteogenic differentiation, reduced matrix Gla protein content, and increased expression of the sodium-dependent cotransporter Pit-1. Magnesium prevented calcification and decreased osteocalcin expression and BMP-2 activity and increased expression of calcification inhibitors, osteopontin and matrix Gla protein. TRPM 7 activation was decreased by calcification medium, an effect reversed by magnesium. 2-APB recapitulated the VSMC osteoblastic phenotype in VSMCs. Osteocalcin was increased by calcification medium in VSMCs and intact vessels from MgL but not MgH, whereas osteopontin was increased in MgH, but not in MgL mice. Magnesium negatively regulates vascular calcification and osteogenic differentiation through increased/restored TRPM7 activity and increased expression of anticalcification proteins, including osteopontin, BMP-7, and matrix Gla protein. New molecular insights are provided whereby magnesium could protect against VSMC calcification.


Asunto(s)
Calcinosis/metabolismo , Diferenciación Celular/fisiología , Magnesio/farmacología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Canales Catiónicos TRPM/metabolismo , Análisis de Varianza , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Ratones , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Osteocalcina/metabolismo , Osteopontina/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda