Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Circ Res ; 133(6): 484-504, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37565345

RESUMEN

BACKGROUND: Experiments in mammalian models of cardiac injury suggest that the cardiomyocyte-specific overexpression of CCND2 (cyclin D2, in humans) improves recovery from myocardial infarction (MI). The primary objective of this investigation was to demonstrate that our specific modified mRNA translation system (SMRTs) can induce CCND2 expression in cardiomyocytes and replicate the benefits observed in other studies of cardiomyocyte-specific CCND2 overexpression for myocardial repair. METHODS: The CCND2-cardiomyocyte-specific modified mRNA translation system (cardiomyocyte SMRTs) consists of 2 modRNA constructs: one codes for CCND2 and contains a binding site for L7Ae, and the other codes for L7Ae and contains recognition elements for the cardiomyocyte-specific microRNAs miR-1 and miR-208. Thus, L7Ae suppresses CCND2 translation in noncardiomyocytes but is itself suppressed by endogenous miR-1 and -208 in cardiomyocytes, thereby facilitating cardiomyocyte-specific CCND2 expression. Experiments were conducted in both mouse and pig models of MI, and control assessments were performed in animals treated with an SMRTs coding for the cardiomyocyte-specific expression of luciferase or green fluorescent protein (GFP), in animals treated with L7Ae modRNA alone or with the delivery vehicle, and in Sham-operated animals. RESULTS: CCND2 was abundantly expressed in cultured, postmitotic cardiomyocytes 2 days after transfection with the CCND2-cardiomyocyte SMRTs, and the increase was accompanied by the upregulation of markers for cell-cycle activation and proliferation (eg, Ki67 and Aurora B kinase). When the GFP-cardiomyocyte SMRTs were intramyocardially injected into infarcted mouse hearts, the GFP signal was observed in cardiomyocytes but no other cell type. In both MI models, cardiomyocyte proliferation (on day 7 and day 3 after treatment administration in mice and pigs, respectively) was significantly greater, left-ventricular ejection fractions (days 7 and 28 in mice, days 10 and 28 in pigs) were significantly higher, and infarcts (day 28 in both species) were significantly smaller in animals treated with the CCND2-cardiomyocyte SMRTs than in any other group that underwent MI induction. CONCLUSIONS: Intramyocardial injections of the CCND2-cardiomyocyte SMRTs promoted cardiomyocyte proliferation, reduced infarct size, and improved cardiac performance in small and large mammalian hearts with MI.


Asunto(s)
Ciclina D2 , MicroARNs , Infarto del Miocardio , Animales , Ratones , Ciclo Celular , Ciclina D2/genética , Modelos Animales de Enfermedad , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Porcinos
2.
J Mol Cell Cardiol ; 188: 61-64, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38301803

RESUMEN

The mammalian heart has a limited regenerative capacity. Previous work suggested the heart can regenerate during development and immediately after birth by inducing cardiomyocyte (CM) proliferation; however, this capacity is lost seven days after birth. modRNA gene delivery, the same technology used successfully in the two mRNA vaccines against SARS-CoV-2, can prompt cardiac regeneration, cardiovascular regeneration and cardiac protection. We recently established a novel CM-specific modRNA translational system (SMRTs) that allows modRNA translation only in CMs. We demonstrated that this system delivers potent intracellular genes (e.g., cell cyclepromoting Pkm2), which are beneficial when expressed in one cell type (i.e., CMs) but not others (non-CMs). Here, we identify Lin28a as an important regulator of the CM cell cycle. We show that Lin28a is expressed in CMs during development and immediately after birth, but not during adulthood. We describe that specific delivery of Lin28a into CM, using CM SMRTs, enables CM cell division and proliferation. Further, we determine that this proliferation leads to cardiac repair and better outcome post MI. Moreover, we identify the molecular pathway of Lin28a in CMs. We also demonstrate that Lin28a suppress Let-7 which is vital for CM proliferation, partially due to its suppressive role on cMYC, HMGA2 and K-RAS.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Miocitos Cardíacos , Animales , Humanos , Adulto , Vacunas contra la COVID-19 , División Celular , Biosíntesis de Proteínas , Mamíferos
3.
Circulation ; 148(5): 405-425, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37409482

RESUMEN

BACKGROUND: Adeno-associated virus (AAV) has emerged as one of the best tools for cardiac gene delivery due to its cardiotropism, long-term expression, and safety. However, a significant challenge to its successful clinical use is preexisting neutralizing antibodies (NAbs), which bind to free AAVs, prevent efficient gene transduction, and reduce or negate therapeutic effects. Here we describe extracellular vesicle-encapsulated AAVs (EV-AAVs), secreted naturally by AAV-producing cells, as a superior cardiac gene delivery vector that delivers more genes and offers higher NAb resistance. METHODS: We developed a 2-step density-gradient ultracentrifugation method to isolate highly purified EV-AAVs. We compared the gene delivery and therapeutic efficacy of EV-AAVs with an equal titer of free AAVs in the presence of NAbs, both in vitro and in vivo. In addition, we investigated the mechanism of EV-AAV uptake in human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and mouse models in vivo using a combination of biochemical techniques, flow cytometry, and immunofluorescence imaging. RESULTS: Using cardiotropic AAV serotypes 6 and 9 and several reporter constructs, we demonstrated that EV-AAVs deliver significantly higher quantities of genes than AAVs in the presence of NAbs, both to human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and to mouse hearts in vivo. Intramyocardial delivery of EV-AAV9-sarcoplasmic reticulum calcium ATPase 2a to infarcted hearts in preimmunized mice significantly improved ejection fraction and fractional shortening compared with AAV9-sarcoplasmic reticulum calcium ATPase 2a delivery. These data validated NAb evasion by and therapeutic efficacy of EV-AAV9 vectors. Trafficking studies using human induced pluripotent stem cell-derived cells in vitro and mouse hearts in vivo showed significantly higher expression of EV-AAV6/9-delivered genes in cardiomyocytes compared with noncardiomyocytes, even with comparable cellular uptake. Using cellular subfraction analyses and pH-sensitive dyes, we discovered that EV-AAVs were internalized into acidic endosomal compartments of cardiomyocytes for releasing and acidifying AAVs for their nuclear uptake. CONCLUSIONS: Together, using 5 different in vitro and in vivo model systems, we demonstrate significantly higher potency and therapeutic efficacy of EV-AAV vectors compared with free AAVs in the presence of NAbs. These results establish the potential of EV-AAV vectors as a gene delivery tool to treat heart failure.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Dependovirus/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Vectores Genéticos , Células Madre Pluripotentes Inducidas/metabolismo , Anticuerpos Neutralizantes , Vesículas Extracelulares/metabolismo
4.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892449

RESUMEN

Modified mRNAs (modRNAs) are an emerging delivery method for gene therapy. The success of modRNA-based COVID-19 vaccines has demonstrated that modRNA is a safe and effective therapeutic tool. Moreover, modRNA has the potential to treat various human diseases, including cardiac dysfunction. Acute myocardial infarction (MI) is a major cardiac disorder that currently lacks curative treatment options, and MI is commonly accompanied by fibrosis and impaired cardiac function. Our group previously demonstrated that the matricellular protein CCN5 inhibits cardiac fibrosis (CF) and mitigates cardiac dysfunction. However, it remains unclear whether early intervention of CF under stress conditions is beneficial or more detrimental due to potential adverse effects such as left ventricular (LV) rupture. We hypothesized that CCN5 would alleviate the adverse effects of myocardial infarction (MI) through its anti-fibrotic properties under stress conditions. To induce the rapid expression of CCN5, ModRNA-CCN5 was synthesized and administrated directly into the myocardium in a mouse MI model. To evaluate CCN5 activity, we established two independent experimental schemes: (1) preventive intervention and (2) therapeutic intervention. Functional analyses, including echocardiography and magnetic resonance imaging (MRI), along with molecular assays, demonstrated that modRNA-mediated CCN5 gene transfer significantly attenuated cardiac fibrosis and improved cardiac function in both preventive and therapeutic models, without causing left ventricular rupture or any adverse cardiac remodeling. In conclusion, early intervention in CF by ModRNA-CCN5 gene transfer is an efficient and safe therapeutic modality for treating MI-induced heart failure.


Asunto(s)
Proteínas CCN de Señalización Intercelular , Fibrosis , Terapia Genética , Infarto del Miocardio , ARN Mensajero , Animales , Humanos , Masculino , Ratones , Proteínas CCN de Señalización Intercelular/genética , Proteínas CCN de Señalización Intercelular/metabolismo , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Ratones Endogámicos C57BL , Infarto del Miocardio/terapia , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Remodelación Ventricular/genética
5.
Mol Ther ; 29(10): 3042-3058, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34332145

RESUMEN

Reprogramming non-cardiomyocytes (non-CMs) into cardiomyocyte (CM)-like cells is a promising strategy for cardiac regeneration in conditions such as ischemic heart disease. Here, we used a modified mRNA (modRNA) gene delivery platform to deliver a cocktail, termed 7G-modRNA, of four cardiac-reprogramming genes-Gata4 (G), Mef2c (M), Tbx5 (T), and Hand2 (H)-together with three reprogramming-helper genes-dominant-negative (DN)-TGFß, DN-Wnt8a, and acid ceramidase (AC)-to induce CM-like cells. We showed that 7G-modRNA reprogrammed 57% of CM-like cells in vitro. Through a lineage-tracing model, we determined that delivering the 7G-modRNA cocktail at the time of myocardial infarction reprogrammed ∼25% of CM-like cells in the scar area and significantly improved cardiac function, scar size, long-term survival, and capillary density. Mechanistically, we determined that while 7G-modRNA cannot create de novo beating CMs in vitro or in vivo, it can significantly upregulate pro-angiogenic mesenchymal stromal cells markers and transcription factors. We also demonstrated that our 7G-modRNA cocktail leads to neovascularization in ischemic-limb injury, indicating CM-like cells importance in other organs besides the heart. modRNA is currently being used around the globe for vaccination against COVID-19, and this study proves this is a safe, highly efficient gene delivery approach with therapeutic potential to treat ischemic diseases.


Asunto(s)
Reprogramación Celular/genética , Terapia Genética/métodos , Isquemia/terapia , Músculo Esquelético/irrigación sanguínea , Infarto del Miocardio/terapia , Neovascularización Fisiológica/genética , Regeneración/genética , Transfección/métodos , Animales , Animales Recién Nacidos , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados para ApoE , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética
6.
Circulation ; 141(11): 916-930, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31992066

RESUMEN

BACKGROUND: Sphingolipids have recently emerged as a biomarker of recurrence and mortality after myocardial infarction (MI). The increased ceramide levels in mammalian heart tissues during acute MI, as demonstrated by several groups, is associated with higher cell death rates in the left ventricle and deteriorated cardiac function. Ceramidase, the only enzyme known to hydrolyze proapoptotic ceramide, generates sphingosine, which is then phosphorylated by sphingosine kinase to produce the prosurvival molecule sphingosine-1-phosphate. We hypothesized that Acid Ceramidase (AC) overexpression would counteract the negative effects of elevated ceramide and promote cell survival, thereby providing cardioprotection after MI. METHODS: We performed transcriptomic, sphingolipid, and protein analyses to evaluate sphingolipid metabolism and signaling post-MI. We investigated the effect of altering ceramide metabolism through a loss (chemical inhibitors) or gain (modified mRNA [modRNA]) of AC function post hypoxia or MI. RESULTS: We found that several genes involved in de novo ceramide synthesis were upregulated and that ceramide (C16, C20, C20:1, and C24) levels had significantly increased 24 hours after MI. AC inhibition after hypoxia or MI resulted in reduced AC activity and increased cell death. By contrast, enhancing AC activity via AC modRNA treatment increased cell survival after hypoxia or MI. AC modRNA-treated mice had significantly better heart function, longer survival, and smaller scar size than control mice 28 days post-MI. We attributed the improvement in heart function post-MI after AC modRNA delivery to decreased ceramide levels, lower cell death rates, and changes in the composition of the immune cell population in the left ventricle manifested by lowered abundance of proinflammatory detrimental neutrophils. CONCLUSIONS: Our findings suggest that transiently altering sphingolipid metabolism through AC overexpression is sufficient and necessary to induce cardioprotection post-MI, thereby highlighting the therapeutic potential of AC modRNA in ischemic heart disease.


Asunto(s)
Ceramidasa Ácida/fisiología , Terapia Genética , Hipoxia/metabolismo , Infarto del Miocardio/metabolismo , ARN Mensajero/uso terapéutico , Esfingolípidos/metabolismo , Ceramidasa Ácida/antagonistas & inhibidores , Ceramidasa Ácida/genética , Animales , Animales Recién Nacidos , Apoptosis , Ceramidas/metabolismo , Cicatriz/patología , Cuerpos Embrioides , Inducción Enzimática , Femenino , Humanos , Hipoxia/etiología , Hipoxia/patología , Células Madre Pluripotentes Inducidas/metabolismo , Inflamación , Masculino , Ratones , Infarto del Miocardio/complicaciones , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mensajero/farmacología , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Transfección , Regulación hacia Arriba
7.
Circulation ; 141(15): 1249-1265, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32078387

RESUMEN

BACKGROUND: The adult mammalian heart has limited regenerative capacity, mostly attributable to postnatal cardiomyocyte cell cycle arrest. In the last 2 decades, numerous studies have explored cardiomyocyte cell cycle regulatory mechanisms to enhance myocardial regeneration after myocardial infarction. Pkm2 (Pyruvate kinase muscle isoenzyme 2) is an isoenzyme of the glycolytic enzyme pyruvate kinase. The role of Pkm2 in cardiomyocyte proliferation, heart development, and cardiac regeneration is unknown. METHODS: We investigated the effect of Pkm2 in cardiomyocytes through models of loss (cardiomyocyte-specific Pkm2 deletion during cardiac development) or gain using cardiomyocyte-specific Pkm2 modified mRNA to evaluate Pkm2 function and regenerative affects after acute or chronic myocardial infarction in mice. RESULTS: Here, we identify Pkm2 as an important regulator of the cardiomyocyte cell cycle. We show that Pkm2 is expressed in cardiomyocytes during development and immediately after birth but not during adulthood. Loss of function studies show that cardiomyocyte-specific Pkm2 deletion during cardiac development resulted in significantly reduced cardiomyocyte cell cycle, cardiomyocyte numbers, and myocardial size. In addition, using cardiomyocyte-specific Pkm2 modified RNA, our novel cardiomyocyte-targeted strategy, after acute or chronic myocardial infarction, resulted in increased cardiomyocyte cell division, enhanced cardiac function, and improved long-term survival. We mechanistically show that Pkm2 regulates the cardiomyocyte cell cycle and reduces oxidative stress damage through anabolic pathways and ß-catenin. CONCLUSIONS: We demonstrate that Pkm2 is an important intrinsic regulator of the cardiomyocyte cell cycle and oxidative stress, and highlight its therapeutic potential using cardiomyocyte-specific Pkm2 modified RNA as a gene delivery platform.


Asunto(s)
Proteínas Portadoras/metabolismo , Ciclo Celular/fisiología , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/metabolismo , Regeneración/fisiología , Hormonas Tiroideas/metabolismo , Animales , Humanos , Ratones , Transfección , Proteínas de Unión a Hormona Tiroide
8.
Cardiovasc Drugs Ther ; 34(6): 871-880, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32822006

RESUMEN

Despite various clinical modalities available for patients, heart disease remains among the leading causes of mortality and morbidity worldwide. Genetic medicine, particularly mRNA, has broad potential as a therapeutic. More specifically, mRNA-based protein delivery has been used in the fields of cancer and vaccination, but recent changes to the structural composition of mRNA have led the scientific community to swiftly embrace it as a new drug to deliver missing genes to injured myocardium and many other organs. Modified mRNA (modRNA)-based gene delivery features transient but potent protein translation and low immunogenicity, with minimal risk of insertional mutagenesis. In this review, we compared and listed the advantages of modRNA over traditional vectors for cardiac therapy, with particular focus on using modRNA therapy in cardiac repair. We present a comprehensive overview of modRNA's role in cardiomyocyte (CM) proliferation, cardiac vascularization, and prevention of cardiac apoptosis. We also emphasize recent advances in modRNA delivery strategies and discuss the challenges for its clinical translation.


Asunto(s)
Terapia Genética , Cardiopatías/terapia , ARN Mensajero/uso terapéutico , Animales , Proliferación Celular , Técnicas de Transferencia de Gen , Terapia Genética/efectos adversos , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , ARN Mensajero/efectos adversos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Recuperación de la Función , Regeneración , Factores de Riesgo , Resultado del Tratamiento
9.
Mol Ther ; 27(4): 785-793, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30611663

RESUMEN

Myocardial infarction (MI) and heart failure (HF) are the leading causes of death in the United States and in most other industrialized nations. MI leads to a massive loss of cardiomyocytes (CMs), which are replaced with non-CM cells, leading to scarring and, in most cases, HF. The adult mammalian heart has a low intrinsic regenerative capacity, mainly because of cell-cycle arrest in CMs. No effective treatment promoting heart regeneration is currently available. Recent efforts to use DNA-based or viral gene therapy approaches to induce cardiac regeneration post-MI or in HF conditions have encountered major challenges, mostly because of the poor and uncontrolled delivery of the introduced genes. Modified mRNA (modRNA) is a safe, non-immunogenic, efficient, transient, local, and controlled nucleic acid delivery system that can overcome the obstacles to DNA-based or viral approaches for cardiac gene delivery. We here review the use of modRNA in cardiac therapy, to induce cardioprotection and vascular or cardiac regeneration after MI. We discuss the current challenges in modRNA-based cardiac treatment, which will need to be overcome for the application of such treatment to ischemic heart disease.


Asunto(s)
Terapia de Reemplazo Enzimático/métodos , Terapia Genética/métodos , Insuficiencia Cardíaca/terapia , Infarto del Miocardio/terapia , ARN Mensajero/genética , Animales , Sistemas de Liberación de Medicamentos , Terapia Genética/efectos adversos , Humanos , Miocitos Cardíacos/metabolismo , Nanopartículas , Regeneración , Transfección
10.
Circulation ; 138(25): 2919-2930, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566018

RESUMEN

BACKGROUND: For more than a decade, Sca-1+ cells within the mouse heart have been widely recognized as a stem cell population with multipotency that can give rise to cardiomyocytes, endothelial cells, and smooth muscle cells in vitro and after cardiac grafting. However, the developmental origin and authentic nature of these cells remain elusive. METHODS: Here, we used a series of high-fidelity genetic mouse models to characterize the identity and regenerative potential of cardiac resident Sca-1+ cells. RESULTS: With these novel genetic tools, we found that Sca-1 does not label cardiac precursor cells during early embryonic heart formation. Postnatal cardiac resident Sca-1+ cells are in fact a pure endothelial cell population. They retain endothelial properties and exhibit minimal cardiomyogenic potential during development, normal aging and upon ischemic injury. CONCLUSIONS: Our study provides definitive insights into the nature of cardiac resident Sca-1+ cells. The observations challenge the current dogma that cardiac resident Sca-1+ cells are intrinsic stem cells for myocardial development, renewal, and repair, and suggest that the mechanisms of transplanted Sca-1+ cells in heart repair need to be reassessed.


Asunto(s)
Células Madre Adultas/fisiología , Antígenos Ly/metabolismo , Células Endoteliales/fisiología , Corazón/embriología , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/fisiología , Animales , Antígenos Ly/genética , Diferenciación Celular , Linaje de la Célula , Autorrenovación de las Células , Células Cultivadas , Desarrollo Embrionario , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Modelos Animales , Regeneración , Trasplante de Células Madre , Cicatrización de Heridas
11.
Circulation ; 135(1): 59-72, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-27803039

RESUMEN

BACKGROUND: Epicardial adipose tissue volume and coronary artery disease are strongly associated, even after accounting for overall body mass. Despite its pathophysiological significance, the origin and paracrine signaling pathways that regulate epicardial adipose tissue's formation and expansion are unclear. METHODS: We used a novel modified mRNA-based screening approach to probe the effect of individual paracrine factors on epicardial progenitors in the adult heart. RESULTS: Using 2 independent lineage-tracing strategies in murine models, we show that cells originating from the Wt1+ mesothelial lineage, which includes epicardial cells, differentiate into epicardial adipose tissue after myocardial infarction. This differentiation process required Wt1 expression in this lineage and was stimulated by insulin-like growth factor 1 receptor (IGF1R) activation. IGF1R inhibition within this lineage significantly reduced its adipogenic differentiation in the context of exogenous, IGF1-modified mRNA stimulation. Moreover, IGF1R inhibition significantly reduced Wt1 lineage cell differentiation into adipocytes after myocardial infarction. CONCLUSIONS: Our results establish IGF1R signaling as a key pathway that governs epicardial adipose tissue formation in the context of myocardial injury by redirecting the fate of Wt1+ lineage cells. Our study also demonstrates the power of modified mRNA -based paracrine factor library screening to dissect signaling pathways that govern progenitor cell activity in homeostasis and disease.


Asunto(s)
Adipocitos/metabolismo , Células Madre Mesenquimatosas/citología , Infarto del Miocardio/patología , Pericardio/citología , Receptor IGF Tipo 1/metabolismo , Adipocitos/citología , Animales , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Infarto del Miocardio/metabolismo , Comunicación Paracrina , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor IGF Tipo 1/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Proteínas WT1
12.
Mol Ther ; 25(6): 1306-1315, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28389322

RESUMEN

Modified mRNA (modRNA) is a new technology in the field of somatic gene transfer that has been used for the delivery of genes into different tissues, including the heart. Our group and others have shown that modRNAs injected into the heart are robustly translated into the encoded protein and can potentially improve outcome in heart injury models. However, the optimal compositions of the modRNA and the reagents necessary to achieve optimal expression in the heart have not been characterized yet. In this study, our aim was to elucidate those parameters by testing different nucleotide modifications, modRNA doses, and transfection reagents both in vitro and in vivo in cardiac cells and tissue. Our results indicate that optimal cardiac delivery of modRNA is with N1-Methylpseudouridine-5'-Triphosphate nucleotide modification and achieved using 0.013 µg modRNA/mm2/500 cardiomyocytes (CMs) transfected with positively charged transfection reagent in vitro and 100 µg/mouse heart (1.6 µg modRNA/µL in 60 µL total) sucrose-citrate buffer in vivo. We have optimized the conditions for cardiac delivery of modRNA in vitro and in vivo. Using the described methods and conditions may allow for successful gene delivery using modRNA in various models of cardiovascular disease.


Asunto(s)
Técnicas de Transferencia de Gen , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , Animales , Biomarcadores , Células Cultivadas , Femenino , Expresión Génica , Genes Reporteros , Humanos , Masculino , Ratones , Imagen Molecular , Biosíntesis de Proteínas , ARN Mensajero/química , Ratas , Transfección
13.
Harefuah ; 157(2): 112-116, 2018 Feb.
Artículo en Hebreo | MEDLINE | ID: mdl-29484868

RESUMEN

INTRODUCTION: Advances in understanding the molecular biology of heart failure, the evolution of vector technology, as well as defining the targets for therapeutic interventions has placed heart failure within the reach of gene-based therapy. During the last decade the concept of delivering cDNA encoding a therapeutic gene to failing cardiomyocytes has moved from hypothesis to the bench of preclinical applications and clinical trials. However, despite significant promise, several obstacles exist, which are described in this review. We anticipate that advances in the field will improve gene therapy in heart failure in future clinical approaches.


Asunto(s)
Terapia Genética , Insuficiencia Cardíaca/genética , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos
14.
Development ; 141(23): 4418-31, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25406392

RESUMEN

During development, cardiogenesis is orchestrated by a family of heart progenitors that build distinct regions of the heart. Each region contains diverse cell types that assemble to form the complex structures of the individual cardiac compartments. Cardiomyocytes are the main cell type found in the heart and ensure contraction of the chambers and efficient blood flow throughout the body. Injury to the cardiac muscle often leads to heart failure due to the loss of a large number of cardiomyocytes and its limited intrinsic capacity to regenerate the damaged tissue, making it one of the leading causes of morbidity and mortality worldwide. In this Primer we discuss how insights into the molecular and cellular framework underlying cardiac development can be used to guide the in vitro specification of cardiomyocytes, whether by directed differentiation of pluripotent stem cells or via direct lineage conversion. Additional strategies to generate cardiomyocytes in situ, such as reactivation of endogenous cardiac progenitors and induction of cardiomyocyte proliferation, will also be discussed.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Corazón/embriología , Morfogénesis/fisiología , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/fisiología , Animales , Biotecnología/métodos , Biotecnología/tendencias , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Humanos , Ratones , Miocitos Cardíacos/citología , Regeneración/fisiología
16.
Blood ; 120(8): 1647-57, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22776817

RESUMEN

Immature dendritic cells (imDCs) can have a tolerizing effect under normal conditions or after transplantation. However, because of the significant heterogeneity of this cell population, it is extremely difficult to study the mechanisms that mediate the tolerance induced or to harness the application of imDCs for clinical use. In the present study, we describe the generation of a highly defined population of imDCs from hematopoietic progenitors and the direct visualization of the fate of TCR-transgenic alloreactive CD4(+) and CD8(+) T cells after encountering cognate or noncognate imDCs. Whereas CD4(+) T cells were deleted via an MHC-independent mechanism through the NO system, CD8(+) T-cell deletion was found to occur through a unique MHC-dependent, perforin-based killing mechanism involving activation of TLR7 and signaling through Triggering Receptor-1 Expressed on Myeloid cells (TREM-1). This novel subpopulation of perforin-expressing imDCs was also detected in various lymphoid tissues in normal animals and its frequency was markedly enhanced after GM-CSF administration.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Granzimas/inmunología , Células Madre Hematopoyéticas/inmunología , Glicoproteínas de Membrana/inmunología , Perforina/inmunología , Receptores Inmunológicos/inmunología , Receptor Toll-Like 7/inmunología , Animales , Linfocitos T CD8-positivos/citología , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Células Dendríticas/citología , Femenino , Células Madre Hematopoyéticas/citología , Complejo Mayor de Histocompatibilidad , Ratones , Ratones Endogámicos C57BL , Receptor Activador Expresado en Células Mieloides 1 , Familia-src Quinasas/inmunología
17.
Circ Res ; 120(8): 1222-1223, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28408445
18.
Pharmaceutics ; 15(9)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37765147

RESUMEN

Directly injecting naked or lipid nanoparticle (LNP)-encapsulated modified mRNA (modRNA) allows rapid and efficient protein expression. This non-viral technology has been used successfully in modRNA vaccines against SARS-CoV-2. The main challenges in using modRNA vaccines were the initial requirement for an ultra-cold storage to preserve their integrity and concerns regarding unwanted side effects from this new technology. Here, we showed that naked modRNA maintains its integrity when stored up to 7 days at 4 °C, and LNP-encapsulated modRNA for up to 7 days at room temperature. Naked modRNA is predominantly expressed at the site of injection when delivered into cardiac or skeletal muscle. In comparison, LNP-encapsulated modRNA granted superior protein expression but also additional protein expression beyond the cardiac or skeletal muscle injection site. To overcome this challenge, we developed a skeletal-muscle-specific modRNA translation system (skeletal muscle SMRTs) for LNP-encapsulated modRNA. This system allows controlled protein translation predominantly at the site of injection to prevent potentially detrimental leakage and expression in major organs. Our study revealed the potential of the SMRTs platform for controlled expression of mRNA payload delivered intramuscularly. To conclude, our SMRTs platform for LNP-encapsulated modRNA can provide safe, stable, efficient and targeted gene expression at the site of injection.

19.
bioRxiv ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37034724

RESUMEN

Transition between activation and quiescence programs in hematopoietic stem and progenitor cells (HSC/HSPCs) is perceived to be governed intrinsically and by microenvironmental co-adaptation. However, HSC programs dictating both transition and adaptability, remain poorly defined. Single cell multiome analysis divulging differential transcriptional activity between distinct HSPC states, indicated for the exclusive absence of Fli-1 motif from quiescent HSCs. We reveal that Fli-1 activity is essential for HSCs during regenerative hematopoiesis. Fli-1 directs activation programs while manipulating cellular sensory and output machineries, enabling HSPCs co-adoptability with a stimulated vascular niche. During regenerative conditions, Fli-1 presets and enables propagation of niche-derived Notch1 signaling. Constitutively induced Notch1 signaling is sufficient to recuperate functional HSC impairments in the absence of Fli-1. Applying FLI-1 modified-mRNA transduction into lethargic adult human mobilized HSPCs, enables their vigorous niche-mediated expansion along with superior engraftment capacities. Thus, decryption of stem cell activation programs offers valuable insights for immune regenerative medicine.

20.
Methods Mol Biol ; 2573: 77-87, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36040588

RESUMEN

Modified mRNA (modRNA) is a safe and effective vector for gene-based therapies. Notably, the safety of modRNA has been validated through COVID-19 vaccines which incorporate modRNA technology to translate spike proteins. Alternative gene delivery methods using plasmids, lentiviruses, adenoviruses, and adeno-associated viruses have suffered from key challenges such as genome integration, delayed and uncontrolled expression, and immunogenic responses. However, modRNA poses no risk of genome integration, has transient and rapid expression, and lacks an immunogenic response. Our lab utilizes modRNA-based therapies to promote cardiac regeneration following myocardial infarction and heart failure. We have also developed and refined an optimized and economical method for synthesis of modRNA. Here, we provide an updated methodology with improved translational efficiency for in vitro and in vivo application.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , COVID-19/terapia , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda