Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(52): e2314998120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38127983

RESUMEN

We report the hydrogen-bonding dynamics of water to a nitrile-functionalized and plasmonic electrode surface as a function of applied voltage. The surface-enhanced two-dimensional infrared spectra exhibit hydrogen-bonded and non-hydrogen-bonded nitrile features in similar proportions, plus cross peaks between the two. Isotopic dilution experiments show that the cross peaks arise predominantly from chemical exchange between hydrogen-bonded and non-hydrogen-bonded nitriles. The chemical exchange rate depends upon voltage, with the hydrogen bond of the water to the nitriles breaking 2 to 3 times slower (>63 vs. 25 ps) under a positive as compared to a negative potential. Spectral diffusion created by hydrogen-bond fluctuations occurs on a ~1 ps timescale and is moderately potential-dependent. Timescales from molecular dynamics simulations agree qualitatively with the experiment and show that a negative voltage causes a small net displacement of water away from the surface. These results show that the voltage applied to an electrode can alter the timescales of solvent motion at its interface, which has implications for electrochemically driven reactions.

2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35115405

RESUMEN

Two-dimensional (2D) optical spectroscopy contains cross-peaks that are helpful features for determining molecular structure and monitoring energy transfer, but they can be difficult to resolve from the much more intense diagonal peaks. Transient absorption (TA) spectra contain transitions similar to cross-peaks in 2D spectroscopy, but in most cases they are obscured by the bleach and stimulated emission peaks. We report a polarization scheme, <0°,0°,+θ2(t2),-θ2(t2)>, that can be easily implemented in the pump-probe beam geometry, used most frequently in 2D and TA spectroscopy. This scheme removes the diagonal peaks in 2D spectroscopies and the intense bleach/stimulated emission peaks in TA spectroscopies, thereby resolving the cross-peak features. At zero pump-probe delay, θ2 = 60° destructively interferes two Feynman paths, eliminating all signals generated by field interactions with four parallel transition dipoles, and the intense diagonal and bleach/stimulated emission peaks. At later delay times, θ2(t2) is adjusted to compensate for anisotropy caused by rotational diffusion. When implemented with TA spectroscopy or microscopy, the pump-probe spectrum is dominated by the cross-peak features. The local oscillator is also attenuated, which enhances the signal two times. This overlooked polarization scheme reduces spectral congestion by eliminating diagonal peaks in 2D spectra and enables TA spectroscopy to measure similar information given by cross-peaks in 2D spectroscopy.


Asunto(s)
Análisis Espectral/métodos , Tomografía Óptica/métodos
3.
J Am Chem Soc ; 146(2): 1543-1553, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38181505

RESUMEN

Water inside biological ion channels regulates the key properties of these proteins, such as selectivity, ion conductance, and gating. In this article, we measure the picosecond spectral diffusion of amide I vibrations of an isotope-labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100-2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope-labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D line shapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent or nonadjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations was observed on a picosecond timescale. These dynamics are in stark contrast with liquid water, which remains highly dynamic even in the presence of ions at high concentrations.

4.
Acc Chem Res ; 56(15): 2062-2071, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429010

RESUMEN

ConspectusUltrafast spectroscopy and imaging have become tools utilized by a broad range of scientists involved in materials, energy, biological, and chemical sciences. Commercialization of ultrafast spectrometers including transient absorption spectrometers, vibrational sum frequency generation spectrometers, and even multidimensional spectrometers have put these advanced spectroscopy measurements into the hands of practitioners originally outside the field of ultrafast spectroscopy. There is now a technology shift occurring in ultrafast spectroscopy, made possible by new Yb-based lasers, that is opening exciting new experiments in the chemical and physical sciences. Amplified Yb-based lasers are not only more compact and efficient than their predecessors but also, most importantly, operate at many times the repetition rate with improved noise characteristics in comparison to the previous generation of Ti:sapphire amplifier technologies. Taken together, these attributes are enabling new experiments, generating improvements to long-standing techniques, and affording the transformation of spectroscopies to microscopies. This Account aims to show that the shift to 100 kHz lasers is a transformative step in nonlinear spectroscopy and imaging, much like the dramatic expansion that occurred with the commercialization of Ti:sapphire laser systems in the 1990s. The impact of this technology will be felt across a great swath of scientific communities. We first describe the technology landscape of amplified Yb-based laser systems used in conjunction with 100 kHz spectrometers operating with shot-to-shot pulse shaping and detection. We also identify the range of different parametric conversion and supercontinuum techniques which now provide a path to making pulses of light optimal for ultrafast spectroscopy. Second, we describe specific instances from our laboratories of how the amplified Yb-based light sources and spectrometers are transformative. For multiple probe time-resolved infrared and transient 2D IR spectroscopy, the gain in temporal span and signal-to-noise enables dynamical spectroscopy measurements from femtoseconds to seconds. These gains widen the applicability of time-resolved infrared techniques across a range of topics in photochemistry, photocatalysis, and photobiology as well as lower the technical barriers to implementation in a laboratory. For 2D visible spectroscopy and microscopy with white light, as well as 2D IR imaging, the high repetition rates of these new Yb-based light sources allow one to spatially map 2D spectra while maintaining high signal-to-noise in the data. To illustrate the gains, we provide examples of imaging applications in the study of photovoltaic materials and spectroelectrochemistry.

5.
Opt Express ; 32(4): 6092-6103, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439320

RESUMEN

We present a frequency domain, AOM-based pulse shaper that utilizes Brewster prisms rather than the current standard of gratings. In doing so, we demonstrate a three-fold increase in efficiency and the ability to compensate for temporal dispersion created by the acousto-optic modulator that filters the pulse spectrum. The shaper is tested between the wavelengths of 520-660 and 840-1170 nm, creating sub-50 fs pulses for each, and used to collect a 2D white-light spectrum of a thin film of semiconducting carbon nanotubes.

6.
J Chem Phys ; 161(13)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39361154

RESUMEN

Action spectroscopies use a readout created by the action of light on the molecules or material rather than optical absorption. Ultrafast 2D photocurrent and 2D fluorescence spectroscopies are two such action spectroscopies. Despite their utility, multidimensional action spectroscopies suffer from a background created by incoherent population mixing. These backgrounds appear when the action of one molecule impacts that of another, creating a signal that mimics a fourth-order population response but is really just the convolution of two linear responses. The background created by incoherent mixing is often much larger than the desired foreground signals. In this paper, we describe the physical mechanisms that give rise to the incoherent signals, drawing Feynman paths for each. There are three variations of incoherent signals, differing by their pulse ordering. They all have the same phase dependence as the desired fourth-order population signals and so cannot be removed by standard phase cycling, but they do differ in their polarization responses and dephasing times. We propose, and implement, a spectrometer design that eliminates the background signals for isotropically oriented samples, leaving only the desired fourth-order 2D action spectra. Our spectrometer utilizes a TWINS interferometer and a pulse shaper interferometer, each driven with a different white-light source so that the pulse pairs within each interferometer are phase stable, but not between the two. The lack of phase stability between the two interferometers eliminates two of the three incoherent responses. The third incoherent response is eliminated with the polarization scheme ⟨0, π/2, π/4, π/4⟩. Our spectrometer also enables both 2D photocurrent and 2D white-light spectra to be collected simultaneously, thereby enabling a direct comparison between action and optical detection under identical conditions and at the exact same position on the sample. Using this spectrometer and photovoltaic devices made from thin films of semiconducting carbon nanotubes, we demonstrate 2D photocurrent spectra free of incoherent background.

7.
J Chem Phys ; 160(6)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38341780

RESUMEN

Understanding water dynamics at charged interfaces is of great importance in various fields, such as catalysis, biomedical processes, and solar cell materials. In this study, we implemented molecular dynamics simulations of a system of pure water interfaced with Au electrodes, on one side of which 4-mercaptobenzonitrile (4-MBN) molecules are adsorbed. We calculated time correlation functions of various dynamic quantities, such as the hydrogen bond status of the N atom of the adsorbed 4-MBN molecules, the rotational motion of the water OH bond, hydrogen bonds between 4-MBN and water, and hydrogen bonds between water molecules in the interface region. Using the Luzar-Chandler model, we analyzed the hydrogen bond dynamics between a 4-MBN and a water molecule. The dynamic quantities we calculated can be divided into two categories: those related to the collective behavior of interfacial water molecules and the H-bond interaction between a water molecule and the CN group of 4-MBN. We found that these two categories of dynamic quantities exhibit opposite trends in response to applied potentials on the Au electrode. We anticipate that the present work will help improve our understanding of the interfacial dynamics of water in various electrolyte systems.

8.
J Am Chem Soc ; 145(33): 18529-18537, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37578394

RESUMEN

The potassium ion (K+) configurations of the selectivity filter of the KcsA ion channel protein are investigated with two-dimensional infrared (2D IR) spectroscopy of amide I vibrations. Single 13C-18O isotope labels are used, for the first time, to selectively probe the S1/S2 or S2/S3 binding sites in the selectivity filter. These binding sites have the largest differences in ion occupancy in two competing K+ transport mechanisms: soft-knock and hard-knock. According to the former, water molecules alternate between K+ ions in the selectivity filter while the latter assumes that K+ ions occupy the adjacent sites. Molecular dynamics simulations and computational spectroscopy are employed to interpret experimental 2D IR spectra. We find that in the closed conductive state of the KcsA channel, K+ ions do not occupy adjacent binding sites. The experimental data is consistent with simulated 2D IR spectra of soft-knock ion configurations. In contrast, the simulated spectra for the hard-knock ion configurations do not reproduce the experimental results. 2D IR spectra of the hard-knock mechanism have lower frequencies, homogeneous 2D lineshapes, and multiple peaks. In contrast, ion configurations of the soft-knock model produce 2D IR spectra with a single peak at a higher frequency and inhomogeneous lineshape. We conclude that under equilibrium conditions, in the absence of transmembrane voltage, both water and K+ ions occupy the selectivity filter of the KcsA channel in the closed conductive state. The ion configuration is central to the mechanism of ion transport through potassium channels.


Asunto(s)
Canales de Potasio , Potasio , Canales de Potasio/química , Potasio/química , Espectrofotometría Infrarroja , Isótopos , Iones/química , Agua/metabolismo , Proteínas Bacterianas/química , Conformación Proteica
9.
J Am Chem Soc ; 145(33): 18568-18577, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37565990

RESUMEN

Quantum confinement in two-dimensional (2D) Ruddlesden-Popper (RP) perovskites leads to the formation of stable quasi-particles, including excitons and biexcitons, the latter of which may enable lasing in these materials. Due to their hybrid organic-inorganic structures and the solution phase synthesis, microcrystals of 2D RP perovskites can be quite heterogeneous, with variations in excitonic and biexcitonic properties between crystals from the same synthesis and even within individual crystals. Here, we employ one- and two-quantum two-dimensional white-light microscopy to systematically study the spatial variations of excitons and biexcitons in microcrystals of a series of 2D RP perovskites BA2MAn-1PbnI3n+1 (n = 2-4, BA= butylammonium, MA = methylammonium). We find that the average biexciton binding energy of around 60 meV is essentially independent of the perovskite layer thickness (n). We also resolve spatial variations of the exciton and biexciton energies on micron length scales within individual crystals. By comparing the one-quantum and two-quantum spectra at each pixel, we conclude that biexcitons are more sensitive to their environments than excitons. These results shed new light on the ways disorder can modify the energetic landscape of excitons and biexcitons in RP perovskites and how biexcitons can be used as a sensitive probe of the microscopic environment of a semiconductor.

10.
Anal Chem ; 94(36): 12374-12382, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36040762

RESUMEN

A time-domain version of photothermal microscopy using an atomic force microscope (AFM) is reported, which we call Fourier transform photothermal (FTPT) spectroscopy, where the delay between two laser pulses is varied and the Fourier transform is computed. An acousto-optic modulator-based pulse shaper sets the delay and phases of the pulses shot-to-shot at 100 kHz, enabling background subtraction and data collection in the rotating frame. The pulse shaper is also used to flatten the pulse spectrum, thereby eliminating the need for normalization by the laser spectrum. We demonstrate the method on 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pn) microcrystals and Mn-phthalocyanine islands, confirming subdiffraction spatial resolution, and providing new spectroscopic insights likely linked to structural defects in the crystals.


Asunto(s)
Rayos Láser , Microscopía , Interferometría , Espectroscopía de Resonancia Magnética , Óptica y Fotónica
11.
Chem Rev ; 120(15): 7152-7218, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32598850

RESUMEN

Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.


Asunto(s)
Modelos Químicos , Proteínas/química , Análisis Espectral/métodos , Humanos , Espectrometría Raman , Electricidad Estática , Vibración
12.
J Chem Phys ; 157(1): 014203, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803806

RESUMEN

We demonstrate the first phase stable measurement of a third-order 2Q spectrum using a pulse shaper in the pump-probe geometry. This measurement was achieved by permuting the time-ordering of the pump pulses, thus rearranging the signal pathways that are emitted in the probe direction. The third-order 2Q spectrum is self-heterodyned by the probe pulse. Using this method, one can interconvert between a 1Q experiment and a 2Q experiment by simply reprogramming a pulse shaper or delay stage. We also measure a fifth-order absorptive 2Q spectrum in the pump-probe geometry, which contains similar information as a third-order experiment but does not suffer from dispersive line shapes. To do so, we introduce methods to minimize saturation-induced artifacts of the pulse shaper, improving fifth-order signals. These techniques add new capabilities for 2D spectrometers that use pulse shapers in the pump-probe beam geometry.

13.
Proc Natl Acad Sci U S A ; 116(14): 6602-6607, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30894486

RESUMEN

UV light and other factors damage crystallin proteins in the eye lens, resulting in cataracts that scatter light and affect vision. Little information exists about protein structures within these disease-causing aggregates. We examined postmortem lens tissue from individuals with and without cataracts using 2D infrared (2DIR) spectroscopy. Amyloid ß-sheet secondary structure was detected in cataract lenses along with denatured structures. No amyloid structures were found in lenses from juveniles, but mature lenses with no cataract diagnosis also contained amyloid, indicating that amyloid structures begin forming before diagnosis. Light scatters more strongly in regions with amyloid structure, and UV light induces amyloid ß-sheet structures, linking the presence of amyloid structures to disease pathology. Establishing that age-related cataracts involve amyloid structures gives molecular insight into a common human affliction and provides a possible structural target for pharmaceuticals as an alternative to surgery.


Asunto(s)
Amiloide , Catarata/metabolismo , Cápsula del Cristalino , Agregación Patológica de Proteínas/metabolismo , Rayos Ultravioleta , Anciano , Amiloide/química , Amiloide/metabolismo , Femenino , Humanos , Cápsula del Cristalino/química , Cápsula del Cristalino/metabolismo , Masculino , Estructura Secundaria de Proteína , Espectrofotometría Infrarroja
14.
Biophys J ; 118(1): 254-261, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31812356

RESUMEN

Ion channels like KcsA enable ions to move across cell membranes at near diffusion-limited rates and with very high selectivity. Various mechanisms have been proposed to explain this phenomenon. Broadly, there is disagreement among the proposed mechanisms about whether ions occupy adjacent sites in the channel during the transport process. Here, using a mixed quantum-classical approach to calculate theoretical infrared spectra, we propose a set of infrared spectroscopy experiments that can discriminate between mechanisms with and without adjacent ions. These experiments differ from previous ones in that they independently probe specific ion binding sites within the selectivity filter. When ions occupy adjacent sites in the selectivity filter, the predicted spectra are significantly redshifted relative to when ions do not occupy adjacent sites. Comparisons between theoretical and experimental peak frequencies will therefore discriminate the mechanisms.


Asunto(s)
Canales de Potasio/metabolismo , Potasio/metabolismo , Espectrofotometría Infrarroja , Transporte Biológico , Simulación de Dinámica Molecular , Canales de Potasio/química , Conformación Proteica , Teoría Cuántica
15.
Opt Express ; 28(22): 33584-33602, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33115018

RESUMEN

The majority of 2D IR spectrometers operate at 1-10 kHz using Ti:Sapphire laser technology. We report a 2D IR spectrometer designed around Yb:KGW laser technology that operates shot-to-shot at 100 kHz. It includes a home-built OPA, a mid-IR pulse shaper, and custom-designed electronics with optional on-chip processing. We report a direct comparison between Yb:KGW and Ti:Sapphire based 2D IR spectrometers. Even though the mid-IR pulse energy is much lower for the Yb:KGW driven system, there is an 8x improvement in signal-to-noise over the 1 kHz Ti:Sapphire driven spectrometer to which it is compared. Experimental data is shown for sub-millimolar concentrations of amides. Advantages and disadvantages of the design are discussed, including thermal background that arises at high repetition rates. This fundamental spectrometer design takes advantage of newly available Yb laser technology in a new way, providing a straightforward means of enhancing sensitivity.

16.
J Phys Chem A ; 124(17): 3471-3483, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32255629

RESUMEN

Surfaces and interfaces are ubiquitous in nature. From cell membranes, to photovoltaic thin films, surfaces have important function in both biological and materials systems. Spectroscopic techniques have been developed to probe systems like these, such as sum frequency generation (SFG) spectroscopies. The advantage of SFG spectroscopy, a second-order spectroscopy, is that it can distinguish between signals produced from molecules in the bulk versus on the surface. We propose a polarization scheme for third-order spectroscopy experiments, such as pump-probe and 2D spectroscopy, to select for surface signals and not bulk signals. This proposed polarization condition uses one pulse perpendicular compared to the other three to isolate cross-peaks arising from molecules with polar and uniaxial (i.e., biaxial) order at a surface, while removing the signal from bulk isotropic molecules. In this work, we focus on two of these cases: XXXY and YYYX, which differ by the sign of the cross-peak they create. We compare this technique to SFG spectroscopy and vibrational circular dichroism to provide insight to the behavior of the cross-peak signal. We propose that these singularly cross-polarized schemes provide odd-ordered spectroscopies the surface-specificity typically associated with even-ordered techniques.

17.
Opt Express ; 27(26): 37236-37247, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878507

RESUMEN

AOM-based pulse shaping as a method has been shown to provide many advantages in the field of ultrafast spectroscopy, in particular for the creation of phase matched pulse pairs for two-dimensional IR and electronic spectroscopy. In this paper we demonstrate the capabilities of a quartz-based AOM pulse-shaper to provide fine control over the phase and spatial dispersion of ultrafast supercontinuum pulses. We show that by using the Bragg condition, we can define a mask function for our AOM such that the angle of diffraction is constant for all frequencies. By summing all the contributions to spectral phase due to normal and anomalous dispersion of our optical components, and taking into account the intrinsic frequency dependent phase as a result of the acoustic sine wave propagating through the AOM, we can determine an optimal mask function that meets the Bragg condition for all frequencies, and generates compressed (∼50 fs) supercontinuum pulses.

18.
Chem Rev ; 117(16): 10726-10759, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28060489

RESUMEN

Proteins exhibit structural fluctuations over decades of time scales. From the picosecond side chain motions to aggregates that form over the course of minutes, characterizing protein structure over these vast lengths of time is important to understanding their function. In the past 15 years, two-dimensional infrared spectroscopy (2D IR) has been established as a versatile tool that can uniquely probe proteins structures on many time scales. In this review, we present some of the basic principles behind 2D IR and show how they have, and can, impact the field of protein biophysics. We highlight experiments in which 2D IR spectroscopy has provided structural and dynamical data that would be difficult to obtain with more standard structural biology techniques. We also highlight technological developments in 2D IR that continue to expand the scope of scientific problems that can be accessed in the biomedical sciences.


Asunto(s)
Proteínas/química , Humanos , Modelos Moleculares , Conformación Proteica , Espectrofotometría Infrarroja
19.
J Phys Chem A ; 123(50): 10824-10836, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31697080

RESUMEN

The dynamics of electronic transitions in solid-state materials are closely linked to microscopic morphology, but it is challenging to simultaneously characterize their spectral and temporal response with high spatial resolution. We present a time-resolved nonlinear microscopy system using white-light supercontinuum pulses as a broadband light source. This system is capable of correlating nanometer scale sample morphology determined from atomic force topography measurements with broadband transient absorption hyperspectral images and ultrafast 2D white-light spectra, all with a spatial resolution of ≤1 µm. The experimental apparatus is described with a focus on the dispersion management strategies necessary to minimize the duration of optical pulses when implementing an AOM based pulse-shaping system covering a broad-spectral range in the VIS/NIR. Experiments on TIPS-pentacene organic semiconductor microcrystals are used to demonstrate the unique capabilities of this technique.

20.
J Phys Chem A ; 123(13): 3046-3055, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30855955

RESUMEN

We report on a new broadband, ultrafast two-dimensional white-light (2DWL) spectrometer that utilizes a supercontinuum pump and a supercontinuum probe generated with a ytterbium fiber oscillator and an all-normal dispersion photonic crystal fiber (ANDi PCF). We demonstrate compression of the supercontinuum to sub-20 fs and the ability to collect high quality 2D spectra on films of single-walled carbon nanotubes. Two spectrometer designs are investigated. Supercontinuum from ANDi PCF provides a means to generate broadband pulse sequences for multidimensional spectroscopy without the need for an optical parametric amplifier.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda