RESUMEN
We demonstrate a method of using a Fourier holographic technique to utilize attosecond soft x-ray pulses to image nanometer-scale objects. A discrete frequency comb of laser-generated high-order harmonics, yielding a train of attosecond pulses, has been used to record spatially and spectrally resolved images. The individual wavelengths were also combined to form a single image, albeit with lower spatial resolution, demonstrating the applicability of the method to using isolated attosecond pulses with continuous bandwidths.
RESUMEN
Harmonic seeded operation of a neon-like titanium plasma-based soft x-ray laser is described. The plasma amplifier is pumped with a variation of the grazing incidence technique involving a fast and localized ionization step. We discuss its effect on gain dynamics by measuring the amplifying factor as a function of the delay between pump pulse and harmonic seed. Two different regimes are pointed out, following the pumping scheme used. For one of them, a delay in the gain generation compared with the pumping laser pulse is observed.
RESUMEN
We report on the shot-to-shot stability of intensity and spatial phase of high-harmonic generation (HHG). The intensity stability is measured for each high-harmonic (HH) order with a spectrometer. Additionally, the spatial phase is measured with an XUV wavefront sensor for a single HH order measured in a single shot, which according to our knowledge was not reported before with a Hartmann wavefront sensor. Furthermore, we compare the single-shot measurement of the spatial phase with time-integrated measurements and we show that the XUV wavefront sensor is a useful tool to simultaneously optimize the spatial phase and intensity of HHG within the available HHG parameter range used in this study.
RESUMEN
The single-shot spatial characteristics of the vacuum ultraviolet self-amplified spontaneous emission of a free electron laser (FEL) is measured at different stages of amplification up to saturation with a Hartmann wavefront sensor. We show that the fundamental radiation at 61.5 nm tends towards a single-mode behavior as getting closer to saturation. The measurements are found in good agreement with simulations and theory. A near diffraction limited wavefront was measured. The analysis of Fresnel diffraction through the Hartmann wavefront sensor hole array also provides some further insight for the evaluation of the FEL transverse coherence, of high importance for various applications.
RESUMEN
Synchrotrons have for decades provided invaluable sources of soft X-rays, the application of which has led to significant progress in many areas of science and technology. But future applications of soft X-rays--in structural biology, for example--anticipate the need for pulses with much shorter duration (femtoseconds) and much higher energy (millijoules) than those delivered by synchrotrons. Soft X-ray free-electron lasers should fulfil these requirements but will be limited in number; the pressure on beamtime is therefore likely to be considerable. Laser-driven soft X-ray sources offer a comparatively inexpensive and widely available alternative, but have encountered practical bottlenecks in the quest for high intensities. Here we establish and characterize a soft X-ray laser chain that shows how these bottlenecks can in principle be overcome. By combining the high optical quality available from high-harmonic laser sources (as a seed beam) with a highly energetic soft X-ray laser plasma amplifier, we produce a tabletop soft X-ray femtosecond laser operating at 10 Hz and exhibiting full saturation, high energy, high coherence and full polarization. This technique should be readily applicable on all existing laser-driven soft X-ray facilities.
RESUMEN
Plasma-based seeded soft x-ray lasers have the potential to generate a high-energy, highly coherent, short pulse beam. Owing to their high density, plasmas created by interaction of an intense laser with a solid target should store the highest amount of energy among all plasma amplifiers. However, to date output energy from seeded solid amplifiers remains as low as 60 nJ. We demonstrated that careful tailoring of the plasma shape is crucial for extracting energy stored in the plasma. With 1-mm-wide plasma, energy as high as 20 microJ in sub-ps pulses is achievable. With such tailored plasma, gain and pumping efficiency have been increased by nearly a factor of 10 as compared to the narrower plasma amplifiers studied here.
RESUMEN
By seeding an optical-field-ionized population-inverted plasma amplifier with the 25th harmonic of an IR laser, we have achieved what we believe to be the first aberration-free laser beam in the soft x-ray spectral range. This laser emits within a cone of 1.34 mrad(1/e(2)) at a repetition rate of 10 Hz at a central wavelength of 32.8 nm. The beam exhibits a circular profile and wavefront distortions as low as lambda/17. A theoretical analysis of these results shows that this high beam quality is due to spatial filtering of the seed beam by the plasma amplifier aperture.
RESUMEN
The collisional (or free-free) absorption of soft x rays in warm dense aluminium remains an unsolved problem. Competing descriptions of the process exist, two of which we compare to our experimental data here. One of these is based on a weak scattering model, another uses a corrected classical approach. These two models show distinctly different behaviors with temperature. Here we describe experimental evidence for the absorption of 26-eV photons in solid density warm aluminium (T_{e}≈1 eV). Radiative x-ray heating from palladium-coated CH foils was used to create the warm dense aluminium samples and a laser-driven high-harmonic beam from an argon gas jet provided the probe. The results indicate little or no change in absorption upon heating. This behavior is in agreement with the prediction of the corrected classical approach, although there is not agreement in absolute absorption value. Verifying the correct absorption mechanism is decisive in providing a better understanding of the complex behavior of the warm dense state.
RESUMEN
High harmonic generation in gases is developing rapidly as a soft X-ray femtosecond light-source for applications. This requires control over all the harmonics characteristics and in particular, spatial properties have to be kept very good. In previous literature, measurements have always included several harmonics contrary to applications, especially spectroscopic applications, which usually require a single harmonic. To fill this gap, we present here for the first time a detailed study of completely isolated harmonics. The contribution of the surrounding harmonics has been totally suppressed using interferential filtering which is available for low harmonic orders. In addition, this allows to clearly identify behaviors of standard odd orders from even orders obtained by frequency-mixing of a fundamental laser and of its second harmonic. Comparisons of the spatial intensity profiles, of the spatial coherence and of the wavefront aberration level of 5ω at 160 nm and 6ω at 135 nm have then been performed. We have established that the fundamental laser beam aberrations can cause the appearance of a non-homogenous donut-shape in the 6ω spatial intensity distribution. This undesirable effect can be easily controlled. We finally conclude that the spatial quality of an even harmonic can be as excellent as in standard generation.
RESUMEN
We report what is to our knowledge the first demonstration of spatial filtering of a high-order harmonic beam into a soft-x-ray laser plasma amplifier at 32.8 nm. After amplification the seed energy is enhanced by a factor of 50, and the beam profile of the amplified beam exhibits an Airy-like shape due to the spatial filtering by the optical field ionized plasma. Moreover, the transverse coherence of the spatially filtered amplified beam is strongly enhanced, resulting in the generation of a peak coherent power of 0.9 x 10(5) to 1.8 x 10(5) W.
RESUMEN
We present the first direct measurement of the time evolution of the gain of a soft x-ray laser amplifier. The measurement is based on the injection of a seed pulse, obtained by high-order harmonic generation, into an x-ray laser medium. Strong amplification occurs when the seed pulse is synchronized with the gain period. By precisely varying the delay between the x-ray laser plasma creation and the seed pulse injection, the actual temporal evolution of the soft x-ray amplifier gain is obtained with a subpicosecond resolution.
RESUMEN
We report direct measurement of the electromagnetic-field spatial distribution in a neonlike Ar capillary discharge-driven soft x-ray laser beam. The wave front was fully characterized in a single shot using a Shack-Hartmann diffractive optics sensor. The wave front was observed to be dependent on the discharge pressure and capillary length, as a result of beam refraction variations in the capillary plasma. The results predict approximately 70% of the laser beam energy can be focused into an area 4 times the size of the diffraction-limited spot, reaching intensities of approximately 4 x 10(13) W/cm(2).
RESUMEN
We present a direct method of studying the focusability of an intense, short-pulse extreme-ultraviolet (XUV) beam obtained by high-harmonic generation. We perform near-field imaging of the focal spot of five high-harmonic orders strongly focused by a broadband toroidal mirror. To visualize the focal spot directly, we image the fluorescence induced by an XUV beam on a cerium-doped YAG crystal on a visible CCD camera. We can thus measure the harmonic spot size on a single image, together with the Strehl ratio, to evaluate the quality of focusing. Such techniques should become instrumental in optimizing the focusing conditions and reaching intensities required for exploring attosecond nonlinear optics in the XUV range.