Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32138369

RESUMEN

MicroRNAs (miRs) regulate complex processes, including angiogenesis, by targeting multiple mRNAs. miR-24-3p-3p directly represses eNOS, GATA2, and PAK4 in endothelial cells (ECs), thus inhibiting angiogenesis during development and in the infarcted heart. miR-24-3p is widely expressed in cardiovascular cells, suggesting that it could additionally regulate angiogenesis by acting on vascular mural cells. Here, we have investigated: 1) new miR-24-3p targets; 2) the expression and the function of miR-24-3p in human vascular ECs; 3) the impact of miR-24-3p inhibition in the angiogenesis reparative response to limb ischemia in mice. Using bioinformatics target prediction platforms and 3'-UTR luciferase assays, we newly identified Notch1 and its Delta-like ligand 1 (Dll1) to be directly targeted by miR-24-3p. miR-24-3p was expressed in human ECs and pericytes cultured under normal conditions. Exposure to hypoxia increased miR-24-3p in ECs but not in pericytes. Transfection with a miR-24-3p precursor (pre-miR-24-3p) increased miR-24-3p expression in ECs, reducing the cell survival, proliferation, and angiogenic capacity. Opposite effects were caused by miR-24-3p inhibition. The anti-angiogenic action of miR-24-3p overexpression could be prevented by simultaneous adenovirus (Ad)-mediated delivery of constitutively active Notch intracellular domain (NICD) into cultured ECs. We next demonstrated that reduced Notch signalling contributes to the anti-angiogenic effect of miR-24-3p in vitro. In a mouse unilateral limb ischemia model, local miR-24-3p inhibition (by adenovirus-mediated miR-24-3p decoy delivery) restored endothelial Notch signalling and increased capillary density. However, the new vessels appeared disorganised and twisted, worsening post-ischemic blood perfusion recovery. To better understand the underpinning mechanisms, we widened the search for miR-24-3p target genes, identifying several contributors to vascular morphogenesis, such as several members of the Wingless (Wnt) signalling pathway, ß-catenin signalling components, and VE-cadherin, which synergise to regulate angiogenesis, pericytes recruitment to neoformed capillaries, maturation, and stabilization of newly formed vessels. Among those, we next focussed on ß-catenin to demonstrate that miR-24-3p inhibition reduces ß-catenin expression in hypoxic ECs, which is accompanied by reduced adhesion of pericytes to ECs. In summary, miR-24-3p differentially targets several angiogenesis modulators and contributes to autonomous and non-autonomous EC crosstalk. In ischemic limbs, miR-24-3p inhibition increases the production of dysfunctional microvessels, impairing perfusion. Caution should be observed in therapeutic targeting of miR-24-3p.


Asunto(s)
Isquemia/metabolismo , MicroARNs/metabolismo , Receptores Notch/metabolismo , Regiones no Traducidas 3'/genética , Regiones no Traducidas 3'/fisiología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Extremidades/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Isquemia/genética , Isquemia/patología , Masculino , Ratones , MicroARNs/genética , Músculo Esquelético/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/genética , beta Catenina/genética , beta Catenina/metabolismo
2.
Front Oncol ; 13: 1203483, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538118

RESUMEN

Background: Down Syndrome (DS) is the most common chromosome anomaly in humans and occurs due to an extra copy of chromosome 21. The malignancy profile in DS is unique, since DS patients have a low risk of developing solid tumors such as breast cancer however they are at higher risk of developing acute myeloid leukemia and acute lymphoblastic leukemia. Methods: In this study, we investigated DNA methylation signatures and epigenetic aging in DS individuals with and without breast cancer. We analyzed DNA methylation patterns in Trisomy 21 (T21) individuals without breast cancer (T21-BCF) and DS individuals with breast cancer (T21-BC), using the Infinium Methylation EPIC BeadChip array. Results: Our results revealed several differentially methylated sites and regions in the T21-BC patients that were associated with changes in gene expression. The differentially methylated CpG sites were enriched for processes related to serine-type peptidase activity, epithelial cell development, GTPase activity, bicellular tight junction, Ras protein signal transduction, etc. On the other hand, the epigenetic age acceleration analysis showed no difference between T21-BC and T21-BCF patients. Conclusions: This is the first study to investigate DNA methylation changes in Down syndrome women with and without breast cancer and it could help shed light on factors that protect against breast cancer in DS.

3.
Hum Pathol ; 40(3): 306-13, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18973916

RESUMEN

Histopathological alterations in human aneurysms and dissections of the thoracic ascending aorta include areas of mucoid degeneration within the medial layer, colocalized with areas of cell disappearance and disruption of extracellular matrix elastic and collagen fibers. We studied the presence of matrix metalloproteinases in relation to their capacity to diffuse through the tissue or to be retained in areas of mucoid degeneration in aneurysms and dissections of the ascending aorta. Ascending aortas from 9 controls, 33 patients with aneurysms, and 14 with acute dissections, all collected at surgery, were analyzed. The morphological aspect was similar whatever the etiology or phenotypic expression of the pathological aortas, involving areas of extracellular matrix breakdown and cell rarefaction associated with mucoid degeneration. Release of proMMP-2, constitutively expressed by smooth muscle cells, was not different between controls and aneurysmal aortas, whereas the aneurysmal aortas released more of the active form. Release of pro and active MMP-9 was also similar between controls and aneurysmal aortas. Immunohistochemical staining of MMP-2 and MMP-9 was weak in both control and pathological aortas. In contrast, released MMP-7 (matrilysin) and MMP-3 (stromelysin-1) could not be detected in conditioned media but were present in tissue extracts with no detectable quantitative difference between controls and pathological aortas. Immunohistochemical staining of MMP-7 and MMP-3 revealed their retention in areas of mucoid degeneration, and semiquantitative evaluation of immunostaining showed more MMP-7 in pathological aortas than in controls. In conclusion, areas of mucoid degeneration, the hallmark of aneurysms, and dissections of thoracic ascending aortas, whatever their etiology, are not inert and can retain specific proteases.


Asunto(s)
Aorta Torácica/enzimología , Aneurisma de la Aorta/enzimología , Disección Aórtica/enzimología , Metaloproteasas/metabolismo , Disección Aórtica/patología , Aorta Torácica/química , Aorta Torácica/patología , Aneurisma de la Aorta/patología , Células Cultivadas , Medios de Cultivo Condicionados/química , Técnica del Anticuerpo Fluorescente Directa , Humanos , Técnicas para Inmunoenzimas , Mucinas/metabolismo , Túnica Media/enzimología , Túnica Media/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda