Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Drug Resist Updat ; 73: 101051, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219531

RESUMEN

Trastuzumab resistance in HER2+ breast cancer (BC) is the major reason leading to poor prognosis of BC patients. Oncogenic gene overexpression or aberrant activation of tyrosine kinase SRC is identified to be the key modulator of trastuzumab response. However, the detailed regulatory mechanisms underlying SRC activation-associated trastuzumab resistance remain poorly understood. In the present study, we discover that SRC-mediated YAP1 tyrosine phosphorylation facilitates its interaction with transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha, TFAP2A), which in turn promotes YAP1/TEAD-TFAP2A (YTT) complex-associated transcriptional outputs, thereby conferring trastuzumab resistance in HER2+ BC. Inhibition of SRC kinase activity or disruption of YTT complex sensitizes cells to trastuzumab treatment in vitro and in vivo. Additionally, we also identify YTT complex co-occupies the regulatory regions of a series of genes related to trastuzumab resistance and directly regulates their transcriptions, including EGFR, HER2, H19 and CTGF. Moreover, YTT-mediated transcriptional regulation is coordinated by SRC kinase activity. Taken together, our study reveals that SRC-mediated YTT complex formation and transcriptions are responsible for multiple mechanisms associated with trastuzumab resistance. Therefore, targeting HER2 signaling in combination with the inhibition of YTT-associated transcriptional outputs could serve as the treatment strategy to overcome trastuzumab resistance caused by SRC activation.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Trastuzumab/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Fosforilación , Factor de Transcripción AP-2/metabolismo , Receptor ErbB-2/genética , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Familia-src Quinasas/metabolismo , Familia-src Quinasas/uso terapéutico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tirosina/metabolismo , Tirosina/uso terapéutico
2.
Mol Cancer ; 23(1): 124, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849840

RESUMEN

BACKGROUND: Intestinal metaplasia (IM) is classified into complete intestinal metaplasia (CIM) and incomplete intestinal metaplasia (IIM). Patients diagnosed with IIM face an elevated susceptibility to the development of gastric cancer, underscoring the critical need for early screening measures. In addition to the complexities associated with diagnosis, the exact mechanisms driving the progression of gastric cancer in IIM patients remain poorly understood. OLFM4 is overexpressed in several types of tumors, including colorectal, gastric, pancreatic, and ovarian cancers, and its expression has been associated with tumor progression. METHODS: In this study, we used pathological sections from two clinical centers, biopsies of IM tissues, precancerous lesions of gastric cancer (PLGC) cell models, animal models, and organoids to explore the role of OLFM4 in IIM. RESULTS: Our results show that OLFM4 expression is highly increased in IIM, with superior diagnostic accuracy of IIM when compared to CDX2 and MUC2. OLFM4, along with MYH9, was overexpressed in IM organoids and PLGC animal models. Furthermore, OLFM4, in combination with Myosin heavy chain 9 (MYH9), accelerated the ubiquitination of GSK3ß and resulted in increased ß-catenin levels through the Wnt signaling pathway, promoting the proliferation and invasion abilities of PLGC cells. CONCLUSIONS: OLFM4 represents a novel biomarker for IIM and could be utilized as an important auxiliary means to delimit the key population for early gastric cancer screening. Finally, our study identifies cell signaling pathways involved in the progression of IM.


Asunto(s)
Progresión de la Enfermedad , Glucógeno Sintasa Quinasa 3 beta , Metaplasia , Cadenas Pesadas de Miosina , beta Catenina , Humanos , Metaplasia/metabolismo , Metaplasia/patología , Metaplasia/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Animales , beta Catenina/metabolismo , beta Catenina/genética , Ratones , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Femenino , Vía de Señalización Wnt , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Modelos Animales de Enfermedad , Masculino , Organoides/metabolismo , Organoides/patología
3.
Mol Cancer ; 23(1): 49, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459596

RESUMEN

Circular RNAs (circRNAs) play important roles in gastric cancer progression but the regulatory role of circRNAs in controlling macrophage function remains elusive. Exosomes serve as cargo for circRNAs and play a crucial role as mediators in facilitating communication between cancer cells and the tumor microenvironment. In this study, we found that circATP8A1, a previously unreported circular RNA, is highly expressed in both gastric cancer tissues and exosomes derived from plasma. Increased circATP8A1 was associated with advanced TNM stage and worse prognosis in patients with gastric cancer. We showed that  the circATP8A1 knockdown significantly inhibited gastric cancer proliferation and invasion in vitro and in vivo. Functionally, exosome circATP8A1 induced the M2 polarization of macrophages through the STAT6 pathway instead of the STAT3 pathway. Mechanistically, circATP8A1 was shown to activate the STAT6 pathway through competitive binding to miR-1-3p, as confirmed by Fluorescence In Situ Hybridization (FISH), RNA immunoprecipitation, RNA pulldown, and Luciferase reporter assays. The reversal of circATP8A1-induced STAT6 pathway activation and macrophage polarization was observed upon blocking miR-1-3p. Macrophages treated with exosomes from gastric cancer cells overexpressing circATP8A1 were able to promote gastric cancer migration, while knockdown of circATP8A1 reversed these effects in vivo. In summary, exosome-derived circATP8A1 from gastric cancer cells induce macrophages M2 polarization via the circATP8A1/miR-1-3p/STAT6 axis, and tumor progression. Our results highlight circATP8A1 as a potential prognostic biomarker and therapeutic target in gastric cancer.


Asunto(s)
Exosomas , MicroARNs , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Proliferación Celular , Exosomas/genética , Hibridación Fluorescente in Situ , Macrófagos , MicroARNs/genética , ARN Circular/genética , Factor de Transcripción STAT6/genética , Neoplasias Gástricas/genética , Microambiente Tumoral
4.
J Transl Med ; 22(1): 132, 2024 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310289

RESUMEN

BACKGROUND: The current precision medicine relies on biomarkers, which are mainly obtained through next-generation sequencing (NGS). However, this model failed to find effective drugs for most cancer patients. This study tried to combine liquid biopsy with functional drug tests using organoid models to find potential drugs for cancer patients. METHODS: Colorectal cancer (CRC) patients were prospectively enrolled and blood samples were collected from patients before the start of treatment. Targeted deep sequencing of cfDNA samples was performed using a 14-gene panel. Gastrointestinal (GI) cancer organoids were established and PI3K and mTOR inhibitors were evaluated on organoid models. RESULTS: A total of 195 mutations were detected across 58 cfDNA samples. The most frequently mutated genes were KRAS, TP53, PIK3CA, and BRAF, all of which exhibited higher mutation rates than tissue biopsy. Although 81% of variants had an allele frequency of less than 1%, certain mutations in KRAS, TP53, and SMAD4 had high allele frequencies exceeding 10%. Notably, among the seven patients with high allele frequency mutations, six had metastatic tumors, indicating that a high allele frequency of ctDNA could potentially serve as a biomarker of later-stage cancer. A high rate of PIK3CA mutation (31 out of 67, or 46.3%) was discovered in CRC patients, suggesting possible tumor progression mechanisms and targeted therapy opportunities. To evaluate the value of anti PI3K strategy in GI cancer, different lines of GI cancer organoids were established. The organoids recapitulated the morphologies of the original tumors. Organoids were generally insensitive to PI3K inhibitors. However, CRC-3 and GC-4 showed response to mTOR inhibitor Everolimus, and GC-3 was sensitive to PI3Kδ inhibitor Idelalisib. The CRC organoid with a PIK3CA mutation showed greater sensitivity to the PI3K inhibitor Alpelisib than wildtype organoids, suggesting potential treatment options for the corresponding patients. CONCLUSION: Liquid biopsy holds significant promise for improving precision treatment and tumor prognosis in colorectal cancer patients. The combination of biomarker-based drug prediction with organoid-based functional drug sensitivity assay may lead to more effective cancer treatment.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/diagnóstico , Fosfatidilinositol 3-Quinasas/genética , Evaluación Preclínica de Medicamentos , Proteínas Proto-Oncogénicas p21(ras)/genética , Detección Precoz del Cáncer , Biopsia Líquida , Inhibidores de las Quinasa Fosfoinosítidos-3 , Biomarcadores , Fosfatidilinositol 3-Quinasa Clase I/genética , Mutación/genética
5.
Drug Resist Updat ; 70: 100985, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37423117

RESUMEN

Phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in the first step of the serine synthesis pathway (SSP), is overexpressed in multiple types of cancers. The androgen receptor inhibitor enzalutamide (Enza) is the primary therapeutic drug for patients with castration-resistant prostate cancer (CRPC). However, most patients eventually develop resistance to Enza. The association of SSP with Enza resistance remains unclear. In this study, we found that high expression of PHGDH was associated with Enza resistance in CRPC cells. Moreover, increased expression of PHGDH led to ferroptosis resistance by maintaining redox homeostasis in Enza-resistant CRPC cells. Knockdown of PHGDH caused significant GSH reduction, induced lipid peroxides (LipROS) increase and significant cell death, resulting in inhibiting growth of Enza-resistant CRPC cells and sensitizing Enza-resistant CRPC cells to enzalutamide treatment both in vitro and in vivo. We also found that overexpression of PHGDH promoted cell growth and Enza resistance in CRPC cells. Furthermore, pharmacological inhibition of PHGDH by NCT-503 effectively inhibited cell growth, induced ferroptosis, and overcame enzalutamide resistance in Enza-resistant CRPC cells both in vitro and in vivo. Mechanically, NCT-503 triggered ferroptosis by decreasing GSH/GSSG levels and increasing LipROS production as well as suppressing SLC7A11 expression through activation of the p53 signaling pathway. Moreover, stimulating ferroptosis by ferroptosis inducers (FINs) or NCT-503 synergistically sensitized Enza-resistant CRPC cells to enzalutamide. The synergistic effects of NCT-503 and enzalutamide were verified in a xenograft nude mouse model. NCT-503 in combination with enzalutamide effectively restricted the growth of Enza-resistant CRPC xenografts in vivo. Overall, our study highlights the essential roles of increased PHGDH in mediating enzalutamide resistance in CRPC. Therefore, the combination of ferroptosis inducer and targeted inhibition of PHGDH could be a potential therapeutic strategy for overcoming enzalutamide resistance in CRPC.

6.
Mol Cancer ; 22(1): 10, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635761

RESUMEN

Skin cancer has emerged as the fifth most commonly reported cancer in the world, causing a burden on global health and the economy. The enormously rising environmental changes, industrialization, and genetic modification have further exacerbated skin cancer statistics. Current treatment modalities such as surgery, radiotherapy, conventional chemotherapy, targeted therapy, and immunotherapy are facing several issues related to cost, toxicity, and bioavailability thereby leading to declined anti-skin cancer therapeutic efficacy and poor patient compliance. In the context of overcoming this limitation, several nanotechnological advancements have been witnessed so far. Among various nanomaterials, nanoparticles have endowed exorbitant advantages by acting as both therapeutic agents and drug carriers for the remarkable treatment of skin cancer. The small size and large surface area to volume ratio of nanoparticles escalate the skin tumor uptake through their leaky vasculature resulting in enhanced therapeutic efficacy. In this context, the present review provides up to date information about different types and pathology of skin cancer, followed by their current treatment modalities and associated drawbacks. Furthermore, it meticulously discusses the role of numerous inorganic, polymer, and lipid-based nanoparticles in skin cancer therapy with subsequent descriptions of their patents and clinical trials.


Asunto(s)
Nanopartículas , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/tratamiento farmacológico , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Nanotecnología
7.
Mol Cancer ; 22(1): 71, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072770

RESUMEN

Mesenchymal gastrointestinal cancers are represented by the gastrointestinal stromal tumors (GISTs) which occur throughout the whole gastrointestinal tract, and affect human health and economy globally. Curative surgical resections and tyrosine kinase inhibitors (TKIs) are the main managements for localized GISTs and recurrent/metastatic GISTs, respectively. Despite multi-lines of TKIs treatments prolonged the survival time of recurrent/metastatic GISTs by delaying the relapse and metastasis of the tumor, drug resistance developed quickly and inevitably, and became the huge obstacle for stopping disease progression. Immunotherapy, which is typically represented by immune checkpoint inhibitors (ICIs), has achieved great success in several solid tumors by reactivating the host immune system, and been proposed as an alternative choice for GIST treatment. Substantial efforts have been devoted to the research of immunology and immunotherapy for GIST, and great achievements have been made. Generally, the intratumoral immune cell level and the immune-related gene expressions are influenced by metastasis status, anatomical locations, driver gene mutations of the tumor, and modulated by imatinib therapy. Systemic inflammatory biomarkers are regarded as prognostic indicators of GIST and closely associated with its clinicopathological features. The efficacy of immunotherapy strategies for GIST has been widely explored in pre-clinical cell and mouse models and clinical experiments in human, and some patients did benefit from ICIs. This review comprehensively summarizes the up-to-date advancements of immunology, immunotherapy and research models for GIST, and provides new insights and perspectives for future studies.


Asunto(s)
Antineoplásicos , Neoplasias Gastrointestinales , Tumores del Estroma Gastrointestinal , Sarcoma , Animales , Ratones , Humanos , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/terapia , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Gastrointestinales/terapia , Neoplasias Gastrointestinales/patología , Sarcoma/tratamiento farmacológico , Inmunoterapia , Antineoplásicos/uso terapéutico , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/uso terapéutico
8.
Mol Cancer ; 22(1): 95, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316830

RESUMEN

Clinical hyperthermic intraperitoneal chemotherapy (HIPEC) is regarded as a potential treatment that can prolong survival of patients with peritoneal metastases after cytoreductive surgery. However, treated tumor cells are prone to becoming heat resistant to HIPEC therapy through high expression of heat shock proteins (HSPs). Here, a carrier-free bifunctional nanoinhibitor was developed for HIPEC therapy in the management of peritoneal metastases. Self-assembly of the nanoinhibitor was formed by mixing Mn ion and epigallocatechin gallate (EGCG) in a controllable manner. Such nanoinhibitor directly inhibited HSP90 and impaired the HSP90 chaperone cycle by reduced intracellular ATP level. Additionally, heat and Mn ion synergistically induced oxidative stress and expression of caspase 1, which activated GSDMD by proteolysis and caused pyroptosis in tumor cells, triggering immunogenic inflammatory cell death and induced maturation of dendritic cells through the release of tumor antigens. This strategy to inhibit heat resistance in HIPEC presented an unprecedented paradigm for converting "cold" tumors into "hot" ones, thus significantly eradicating disseminated tumors located deep in the abdominal cavity and stimulating immune response in peritoneal metastases of a mouse model. Collectively, the nanoinhibitor effectively induced pyroptosis of colon tumor cells under heat conditions by inhibiting heat stress resistance and increasing oxidative stress, which may provide a new strategy for treatment of colorectal peritoneal metastases.


Asunto(s)
Quimioterapia Intraperitoneal Hipertérmica , Neoplasias Peritoneales , Animales , Ratones , Neoplasias Peritoneales/tratamiento farmacológico , Proteínas HSP90 de Choque Térmico , Proteolisis , Colon
9.
J Nanobiotechnology ; 21(1): 64, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823540

RESUMEN

BACKGROUND: Mild-temperature photothermal therapy (mild PTT) is a safe and promising tumor therapeutic modality by alleviating the damage of healthy tissues around the tumor due to high temperature. However, its therapeutic efficiency is easily restricted by heat shock proteins (HSPs). Thus, exploitation of innovative approaches of inhibiting HSPs to enhance mild PTT efficiency is crucial for the clinical application of PTT. RESULTS: Herein, an innovative strategy is reported: pyroptosis-boosted mild PTT based on a Mn-gallate nanoformulation. The nanoformulation was constructed via the coordination of gallic acid (GA) and Mn2+. It shows an acid-activated degradation and releases the Mn2+ and GA for up-regulation of reactive oxygen species (ROS), mitochondrial dysfunction and pyroptosis, which can result in cellular ATP deprivation via both the inhibiton of ATP generation and incresed ATP efflux. The reduction of ATP and accumulation of ROS provide a powerful approach for inhibiting the expression of HSPs, which enables the nanoformulation-mediated mild PTT. CONCLUSIONS: Our in-vitro and in-vivo results demonstrate that this strategy of pyroptosis-assited PTT can achieve efficient mild PTT efficiency for osteosarcoma therapy.


Asunto(s)
Adenosina Trifosfato , Neoplasias , Terapia Fototérmica , Piroptosis , Humanos , Adenosina Trifosfato/deficiencia , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Proteínas de Choque Térmico , Nanopartículas , Neoplasias/metabolismo , Neoplasias/terapia , Terapia Fototérmica/métodos , Piroptosis/fisiología , Especies Reactivas de Oxígeno , Temperatura
10.
Mol Cancer ; 19(1): 54, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32164712

RESUMEN

Chemoresistance, whether intrinsic or acquired, is a major obstacle in the treatment of cancer. The resistance of cancer cells to chemotherapeutic drugs can result from various mechanisms. Over the last decade, it has been reported that 1ong noncoding RNAs (lncRNAs) can mediate carcinogenesis and drug resistance/sensitivity in cancer cells. This article reviews, in detail, recent studies regarding the roles of lncRNAs in mediating drug resistance.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinogénesis/patología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/patología , ARN Largo no Codificante/genética , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética
11.
Angew Chem Int Ed Engl ; 59(46): 20697-20703, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32735748

RESUMEN

The efficacy of photodynamic therapy is typically reliant on the local concentration and diffusion of oxygen. Due to the hypoxic microenvironment found in solid tumors, oxygen-independent photosensitizers are in great demand for cancer therapy. We herein report an iridium(III) anthraquinone complex as a mitochondrion-localized carbon-radical initiator. Its emission is turned on under hypoxic conditions after reduction by reductase. Furthermore, its two-photon excitation properties (λex =730 nm) are highly desirable for imaging. Upon irradiation, the reduced form of the complex generates carbon radicals, leading to a loss of mitochondrial membrane potential and cell death (IC50light =2.1 µm, IC50dark =58.2 µm, PI=27.7). The efficacy of the complex as a PDT agent was also demonstrated under hypoxic conditions in vivo. To the best of our knowledge, it is the first metal-complex-based theranostic agent which can generate carbon radicals for oxygen-independent two-photon photodynamic therapy.


Asunto(s)
Carbono/química , Hipoxia de la Célula , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Humanos , Mitocondrias/metabolismo , NADP/metabolismo , Neoplasias/patología , Fotoquimioterapia/métodos , Fotones , Análisis Espectral/métodos , Microambiente Tumoral
12.
Anal Chem ; 91(11): 7112-7117, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31088079

RESUMEN

Alkaline phosphatase (ALP) is distributed widely in living organisms and is an important biomarker closely related to many physiological and pathological processes. However, in vivo real-time detection of ALP remains a significant challenge. Herein, we developed a turn-on molecular probe (denoted as LET-3) to visualize ALP activity in tumor tissues through near-infrared fluorescence (NIRF) and photoacoustic (PA) dual-modal imaging. LET-3, composed of NIR hemicyanine dye (LET-CyOH) and a phosphate moiety, showed a 23-fold NIRF enhancement at 730 nm and 27-fold PA enhancement at 710 nm upon activation by ALP. More importantly, both in vitro and in vivo diagnostic experiments indicated that LET-3 has a high sensitivity and good selectivity for ALP. These findings provide a promising strategy for in vivo ALP detection using NIRF and PA dual-channel turn-on probes.


Asunto(s)
Fosfatasa Alcalina/análisis , Imagen Molecular/métodos , Sondas Moleculares/química , Técnicas Fotoacústicas/métodos , Fosfatasa Alcalina/metabolismo , Animales , Carbocianinas/química , Femenino , Fluorescencia , Células HeLa , Humanos , Límite de Detección , Espectrometría de Masas/métodos , Ratones Desnudos , Sondas Moleculares/síntesis química , Sondas Moleculares/toxicidad , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo , Fosforilación , Sensibilidad y Especificidad , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Small ; 15(6): e1803866, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30645025

RESUMEN

The detection of Cu2+ in living plants and animals is of great importance for environment monitoring and disease diagnosis. Here, a near-infrared (NIR) turn-on photoacoustic (PA) probe (denoted as LET-2) is developed for Cu2+ detection in living subjects, such as soybean sprouts and mice. The absorbance band of LET-2 shifts from 625 to 715 nm after the interaction with Cu2+ , thus producing strong PA signal output at 715 nm (PA715 ) as an indicator. The PA715 value is increased as a function of the concentration of Cu2+ (0 × 10-6 -20 × 10-6 m), with a calculated limit of detection of 10.8 × 10-9 m. More importantly, both in vitro and in vivo studies in soybean sprouts and mice indicate that the as-prepared LET-2 PA probe is highly sensitive and selective for Cu2+ detection. These findings provide a solution for in vivo detection of metal ions by using chemoselective PA probes.


Asunto(s)
Cobre/metabolismo , Glycine max/metabolismo , Imagenología Tridimensional , Técnicas Fotoacústicas/métodos , Animales , Ratones , Sondas Moleculares/química , Ultrasonido
14.
Small ; 14(30): e1800782, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29873182

RESUMEN

Photoacoustic (PA) imaging (PAI) is a noninvasive and nonionizing biomedical imaging modality that combines the advantages of optical imaging and ultrasound imaging. Based on PAI, photoacoustic detection (PAD) is an emerging approach that is involved with the interaction between PA probes and analytes resulting in the changes of photoacoustic signals for molecular detection with rich contrast, high resolution, and deep tissue penetration. This Review focuses on the recent development of PA probes in PAD. The following contents will be discussed in detail: 1) the construction of PA probes; 2) the applications and mechanisms of PAD to different types of analytes, including microenvironments, small biomolecules, or metal ions; 3) the challenges and perspectives of PA probes in PAD.


Asunto(s)
Imagen Molecular/métodos , Imagen Molecular/tendencias , Sondas Moleculares/química , Técnicas Fotoacústicas/métodos , Técnicas Fotoacústicas/tendencias , Técnicas Biosensibles , Iones , Metales/química
15.
Chem Soc Rev ; 46(19): 5771-5804, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28654103

RESUMEN

Cancer is rapidly becoming the top killer in the world. Most of the FDA approved anticancer drugs are organic molecules, while metallodrugs are very scarce. The advent of the first metal based therapeutic agent, cisplatin, launched a new era in the application of transition metal complexes for therapeutic design. Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anti-cancer agents that serve as alternatives to cisplatin and its derivertives. Ruthenium(iii) complexes have successfully been used in clinical research and their mechanisms of anticancer action have been reported in large volumes over the past few decades. Ruthenium(ii) complexes have also attracted significant attention as anticancer candidates; however, only a few of them have been reported comprehensively. In this review, we discuss the development of ruthenium(ii) complexes as anticancer candidates and biocatalysts, including arene ruthenium complexes, polypyridyl ruthenium complexes, and ruthenium nanomaterial complexes. This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties. This review also highlights the catalytic activity and the photoinduced activation of ruthenium(ii) complexes, their targeted delivery, and their activity in nanomaterial systems.

16.
Bioorg Med Chem Lett ; 27(20): 4698-4704, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916341

RESUMEN

Breast cancer resistant protein (BCRP/ABCG2), a 72kDa plasma membrane transporter protein is a member of ABC transporter superfamily. Increased expression of BCRP causes increased efflux and therefore, reduced intracellular accumulation of many unrelated chemotherapeutic agents leading to multidrug resistance (MDR). A series of 31 benzamide and phenyltetrazole derivatives with amide and urea linkers has been synthesized to serve as potential BCRP inhibitors in order to overcome BCRP-mediated MDR. The target derivatives were tested for their cytotoxicity and reversal effects in human non-small cell lung cancer cell line H460 and mitoxantrone resistant cell line H460/MX20 using the MTT assay. In the benzamide series, compounds 6 and 7 exhibited a fold resistance of 1.51 and 1.62, respectively at 10µM concentration which is similar to that of FTC, a known BCRP inhibitor. Compounds 27 and 31 were the most potent analogues in the phenyltetrazole series with amide linker with a fold resistance of 1.39 and 1.32, respectively at 10µM concentration. For the phenyltetrazole series with urea linker, 38 exhibited a fold resistance of 1.51 which is similar than that of FTC and is the most potent compound in this series. The target compounds did not exhibit reversal effect in P-gp overexpressing resistant cell line SW620/Ad300 suggesting that they are selective BCRP inhibitors.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Benzamidas/química , Benzamidas/farmacología , Diseño de Fármacos , Proteínas de Neoplasias/antagonistas & inhibidores , Tetrazoles/química , Tetrazoles/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Amidas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Benzamidas/síntesis química , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Proteínas de Neoplasias/metabolismo , Relación Estructura-Actividad , Tetrazoles/síntesis química , Urea/química
17.
Molecules ; 21(9)2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27649127

RESUMEN

In recent years, tyrosine kinase inhibitors (TKIs) have been shown capable of inhibiting the ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR). In this study, we determine whether osimertinib, a novel selective, irreversible EGFR (epidermal growth factor receptor) TKI, could reverse ABC transporter-mediated MDR. The results showed that, at non-toxic concentrations, osimertinib significantly sensitized both ABCB1-transfected and drug-selected cell lines to substrate anticancer drugs colchicine, paclitaxel, and vincristine. Osimertinib significantly increased the accumulation of [³H]-paclitaxel in ABCB1 overexpressing cells by blocking the efflux function of ABCB1 transporter. In contrast, no significant alteration in the expression levels and localization pattern of ABCB1 was observed when ABCB1 overexpressing cells were exposed to 0.3 µM osimertinib for 72 h. In addition, ATPase assay showed osimertinib stimulated ABCB1 ATPase activity. Molecular docking and molecular dynamic simulations showed osimertinib has strong and stable interactions at the transmembrane domain of human homology ABCB1. Taken together, our findings suggest that osimertinib, a clinically-approved third-generation EGFR TKI, can reverse ABCB1-mediated MDR, which supports the combination therapy with osimertinib and ABCB1 substrates may potentially be a novel therapeutic stategy in ABCB1-positive drug resistant cancers.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Mutación , Neoplasias/tratamiento farmacológico , Piperazinas/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Acrilamidas , Compuestos de Anilina , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo
18.
Chemistry ; 21(43): 15308-19, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26338207

RESUMEN

Hypoxia is the critical feature of the tumor microenvironment that is known to lead to resistance to many chemotherapeutic drugs. Six novel ruthenium(II) anthraquinone complexes were designed and synthesized; they exhibit similar or superior cytotoxicity compared to cisplatin in hypoxic HeLa, A549, and multidrug-resistant (A549R) tumor cell lines. Their anticancer activities are related to their lipophilicity and cellular uptake; therefore, these physicochemical properties of the complexes can be changed by modifying the ligands to obtain better anticancer candidates. Complex 1, the most potent member of the series, is highly active against hypoxic HeLa cancer cells (IC50 =0.53 µM). This complex likely has 46-fold better activity than cisplatin (IC50 =24.62 µM) in HeLa cells. This complex tends to accumulate in the mitochondria and the nucleus of hypoxic HeLa cells. Further mechanistic studies show that complex 1 induced cell apoptosis during hypoxia through multiple pathways, including those of DNA damage, mitochondrial dysfunction, and the inhibition of DNA replication and HIF-1α expression, making it an outstanding candidate for further in vivo studies.


Asunto(s)
Antraquinonas/química , Antraquinonas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Neoplasias Pulmonares/química , Rutenio/química , Línea Celular Tumoral , Células HeLa , Células Hep G2 , Humanos , Hipoxia , Ligandos , Neoplasias Pulmonares/tratamiento farmacológico
19.
Chemistry ; 21(34): 12000-10, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26215253

RESUMEN

Five cyclometalated iridium(III) complexes with 2-phenylimidazo[4,5-f][1,10]phenanthroline derivatives (IrL1-IrL5) were synthesized and developed to image and track mitochondria in living cells under two-photon (750 nm) excitation, with two-photon absorption cross-sections of 48.8-65.5 GM at 750 nm. Confocal microscopy and inductive coupled plasma-mass spectrometry (ICP-MS) demonstrated that these complexes selectively accumulate in mitochondria within 5 min, without needing additional reagents for membrane permeabilization, or replacement of the culture medium. In addition, photobleaching experiments and luminescence measurements confirmed the photostability of these complexes under continuous laser irradiation and physiological pH resistance. Moreover, results using 3D multicellular spheroids demonstrate the proficiency of these two-photon luminescent complexes in deep penetration imaging. Two-photon excitation using such novel complexes of iridium(III) for exclusive visualization of mitochondria in living cells may substantially enhance practical applications of bioimaging and tracking.


Asunto(s)
Iridio/química , Sustancias Luminiscentes/química , Dinámicas Mitocondriales/efectos de los fármacos , Compuestos Organometálicos/química , Células HeLa , Humanos , Mediciones Luminiscentes/métodos , Espectrometría de Masas , Fotones
20.
Adv Sci (Weinh) ; : e2308395, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024501

RESUMEN

The extracellular matrix (ECM) has been demonstrated to be dysregulated and crucial for malignant progression in gastric cancer (GC), but the mechanism is not well understood. Here, that discoidin domain receptor 1 (DDR1), a principal ECM receptor, is recognized as a key driver of GC progression is reported. Mechanistically, DDR1 directly interacts with the PAS domain of hypoxia-inducible factor-1α (HIF-1α), suppresses its ubiquitination and subsequently strengthens its transcriptional regulation of angiogenesis. Additionally, DDR1 upregulation in GC cells promotes actin cytoskeleton reorganization by activating HIF-1α/ Ras Homolog Family Member A (RhoA)/Rho-associated protein kinase 1 (ROCK1) signaling, which in turn enhances the metastatic capacity. Pharmacological inhibition of DDR1 suppresses GC progression and angiogenesis in patient-derived xenograft (PDX) and organoid models. Taken together, this work first indicates the effects of the DDR1-HIF-1α axis on GC progression and reveals the related mechanisms, providing experimental evidence for DDR1 as a therapeutic target for GC.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda