Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Anim Ecol ; 93(3): 294-306, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37970639

RESUMEN

In temperate regions, the annual pattern of spring onset can be envisioned as a 'green wave' of emerging vegetation that moves across continents from low to high latitudes, signifying increasing food availability for consumers. Many herbivorous migrants 'surf' such resource waves, timing their movements to exploit peak vegetation resources in early spring. Although less well studied at the individual level, secondary consumers such as insectivorous songbirds can track vegetation phenology during migration as well. We hypothesized that four species of ground-foraging songbirds in eastern North America-two warblers and two thrushes-time their spring migrations to coincide with later phases of vegetation phenology, corresponding to increased arthropod prey, and predicted they would match their migration rate to the green wave but trail behind it rather than surfing its leading edge. We further hypothesized that the rate at which spring onset progresses across the continent influences bird migration rates, such that individuals adjust migration timing within North America to phenological conditions they experience en route. To test our hypotheses, we used a continent-wide automated radio telemetry network to track individual songbirds on spring migration between the U.S. Gulf Coast region and northern locations closer to their breeding grounds. We measured vegetation phenology using two metrics of spring onset, the spring index first leaf date and the normalized difference vegetation index (NDVI), then calculated the rate and timing of spring onset relative to bird detections. All individuals arrived in the southeastern United States well after local spring onset. Counter to our expectations, we found that songbirds exhibited a 'catching up' pattern: Individuals migrated faster than the green wave of spring onset, effectively closing in on the start of spring as they approached breeding areas. While surfing of resource waves is a well-documented migration strategy for herbivorous waterfowl and ungulates, individual songbirds in our study migrated faster than the green wave and increasingly caught up to its leading edge en route. Consequently, songbirds experience a range of vegetation phenophases while migrating through North America, suggesting flexibility in their capacity to exploit variable resources in spring.


En las regiones templadas, el patrón anual de inicio de la primavera puede concebirse como una "ola verde" de vegetación emergente que se desplaza por los continentes desde las latitudes bajas a las altas, lo que significa una mayor disponibilidad de alimento para los consumidores. Muchos herbívoros migratorios "surfean" estas olas de recursos, programando sus movimientos para aprovechar los picos de vegetación a principios de primavera. Aunque menos estudiados a nivel de individuo, los consumidores secundarios, como las aves terrestres insectívoras, también pueden seguir la fenología de la vegetación durante la migración. Hipotetizamos es que cuatro especies de aves terrestres que se alimentan en el suelo en el este de Norteamérica - dos reinitas y dos zorzales - programan sus migraciones primaverales para que coincidan con las fases más tardías de la fenología de la vegetación, que se corresponden con un aumento de artrópodos, y predijimos que sincronizarian su ritmo de migración con la ola verde, pero que irían detrás de ella en lugar de surfear su borde delantero. También hipotetizamos que el ritmo al que avanza la primavera en el continente influye en las tasas de migración de las aves, de modo que los individuos ajustan la fecha de migración dentro de Norteamérica a las condiciones fenológicas que experimentan en ruta. Para comprobar nuestras hipótesis, utilizamos una red automatizada de radiotelemetría a escala continental para seguir individuos en su migración primaveral entre la región de la costa del Golfo de EEUU y las localidades septentrionales más cercanas a sus zonas de cría. Medimos la fenología de la vegetación utilizando dos métricas del inicio de la primavera, el índice de la fecha de la primera hoja primaveral y el índice de vegetación de diferencia normalizada (NDVI), luego calculamos la tasa y el tiempo de la aparaciòn de la primavera relativo a las detecciones de aves. Todos los individuos llegaron al sureste de EEUU bastante después del inicio de la primavera local. Contrario a nuestras expectativas, descubrimos que las aves terrestres mostraron un patrón de Carrera para "ponerse al día": los individuos migraron frente a la ola verde del inicio de la primavera, acercándose efectivamente al inicio de la primavera a medida que llegaban a las zonas de cría. Mientras que el surfing de las olas de recursos es una estrategia migratoria bien documentada para las aves acuáticas herbívoras y los ungulados, los individuos de aves terrestres de nuestro estudio migraron más rápido que la ola verde y alcanzaron cada vez más el borde delantero en ruta. En consecuencia, las aves terrestres experimentan una serie de fases fenológicas de la vegetación mientras migran a través de Norteamérica, lo que sugiere flexibilidad en su capacidad para explotar recursos variables en primavera.


Asunto(s)
Pájaros Cantores , Humanos , Animales , Migración Animal , Fitomejoramiento , América del Norte , Estaciones del Año
2.
Proc Biol Sci ; 285(1889)2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30355710

RESUMEN

Many migratory bird species are declining, and the migratory period may limit populations because of the risk in traversing large geographical features during passage. Using automated radio-telemetry, we tracked 139 Swainson's thrushes (Catharus ustulatus) departing coastal Alabama, USA and crossing the Gulf of Mexico to arrive in the Yucatan Peninsula, Mexico during autumn. We estimated apparent survival and examined how extrinsic (weather variables and day of year) and intrinsic (fat load, sex and age) factors influenced survival using a mark-recapture approach. We also examined how favourability of winds for crossing the Gulf varied over the past 25 years. Fat load, day of year and wind profit were important factors in predicting which individuals survived crossing the Gulf. Survival estimates varied with wind profit and fat, but generally, fat birds departing on days with favourable wind profits had an apparent survival probability of greater than 0.90, while lean individuals with no or negative wind profits had less than 0.33. The proportion of favourable nights varied within and among years, but has increased over the last 25 years. While conservation strategies cannot improve extrinsic factors, they can provide opportunities for birds to refuel before crossing large geographical features through protecting and creating high-quality stopover sites.


Asunto(s)
Tejido Adiposo , Migración Animal , Longevidad , Pájaros Cantores/fisiología , Tiempo (Meteorología) , Factores de Edad , Animales , Golfo de México , Estaciones del Año , Factores Sexuales , Viento
3.
Proc Natl Acad Sci U S A ; 112(46): E6331-8, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26578793

RESUMEN

Approximately two thirds of migratory songbirds in eastern North America negotiate the Gulf of Mexico (GOM), where inclement weather coupled with no refueling or resting opportunities can be lethal. However, decisions made when navigating such features and their consequences remain largely unknown due to technological limitations of tracking small animals over large areas. We used automated radio telemetry to track three songbird species (Red-eyed Vireo, Swainson's Thrush, Wood Thrush) from coastal Alabama to the northern Yucatan Peninsula (YP) during fall migration. Detecting songbirds after crossing ∼1,000 km of open water allowed us to examine intrinsic (age, wing length, fat) and extrinsic (weather, date) variables shaping departure decisions, arrival at the YP, and crossing times. Large fat reserves and low humidity, indicative of beneficial synoptic weather patterns, favored southward departure across the Gulf. Individuals detected in the YP departed with large fat reserves and later in the fall with profitable winds, and flight durations (mean = 22.4 h) were positively related to wind profit. Age was not related to departure behavior, arrival, or travel time. However, vireos negotiated the GOM differently than thrushes, including different departure decisions, lower probability of detection in the YP, and longer crossing times. Defense of winter territories by thrushes but not vireos and species-specific foraging habits may explain the divergent migratory behaviors. Fat reserves appear extremely important to departure decisions and arrival in the YP. As habitat along the GOM is degraded, birds may be limited in their ability to acquire fat to cross the Gulf.


Asunto(s)
Tejido Adiposo , Migración Animal/fisiología , Pájaros Cantores/fisiología , Tiempo (Meteorología) , Animales , Golfo de México
4.
Oecologia ; 185(2): 205-212, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28852874

RESUMEN

Migrating birds are under selective pressure to complete long-distance flights quickly and efficiently. Wing morphology and body mass influence energy expenditure of flight, such that certain characteristics may confer a greater relative advantage when making long crossings over ecological barriers by modifying the flight range or speed. We explored the possibility, among light (mass <50 g) migrating passerines, that species with relatively poorer flight performance related to wing shape and/or body mass have a lower margin for error in dealing with the exigencies of a long water crossing across the Gulf of Mexico and consequently minimize their travel time or distance. We found that species-mean fat-free body mass and wing tip pointedness independently explained variability among species distributions within ~50 km from the northern coast. In both spring and autumn, lighter (i.e., slower flying) species and species with more rounded wings were concentrated nearest the coastline. Our results support the idea that morphology helps to shape broad-scale bird distributions along an ecological barrier and that migration exerts some selective force on passerine morphology. Furthermore, smaller species with less-efficient flight appear constrained to stopping over in close proximity to ecological barriers, illustrating the importance of coastal habitats for small passerine migrants.


Asunto(s)
Migración Animal , Aves/anatomía & histología , Aves/fisiología , Alas de Animales/anatomía & histología , Animales , Biodiversidad , Pesos y Medidas Corporales , Ecosistema , Metabolismo Energético , Golfo de México , Alas de Animales/fisiología
5.
bioRxiv ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37961388

RESUMEN

The long-distance, seasonal migrations of birds make them an effective ecological bridge for the movement of ticks. The introduction of exotic tick species to new geographical regions can lead to the emergence of novel tick-borne pathogens or the re-emergence of previously eradicated ones. This study assessed the prevalence of exotic tick species parasitizing resident, short-distance, and long-distance songbirds during spring and autumn at stopover sites in the northern Gulf of Mexico using the mitochondrial 12S rDNA gene. Birds were captured for tick collection from six different sites from late August to early November in both 2018 and 2019. The highest number of ticks were collected in the 2019 season. Most ticks were collected off the Yellow-breasted Chat (Icteria virens) and Common Yellowthroat (Geothlypis trichas), and 54% of the total ticks collected were from Grand Chenier, LA. A high throughput 16S ribosomal RNA sequencing approach was followed to characterize the microbial communities and identify pathogenic microbes in all tick samples. Tick microbial communities, diversity, and community structure were determined using quantitative insight into microbial ecology (QIIME). The sparse correlations for compositional data (SparCC) approach was then used to construct microbial network maps and infer microbial correlations. A total of 421 individual ticks in the genera Amblyomma, Haemaphysalis, and Ixodes were recorded from 28 songbird species, of which Amblyomma and Amblyomma longirostre was the most abundant tick genus and species, respectively. Microbial profiles showed that Proteobacteria was the most abundant phylum. The most abundant bacteria include the pathogenic Rickettsia and endosymbiont Francisella, Candidatus Midichloria, and Spiroplasma. BLAST analysis and phylogenetic reconstruction of the Rickettsia sequences revealed the highest similarities to pathogenic spotted and non-spotted fever groups, including R. buchneri, R. conorii, R. prowazekii, R. bellii, R. australis, R. parkeri, R. monacensis, and R. monteiroi. Permutation multivariate analysis of variance revealed that the relative abundance of Francisella and Rickettsia drives microbial patterns across the tick genera. We also observed a higher percentage of positive correlations in microbe-microbe interactions among members of the microbial communities. Network analysis suggested a negative correlation between a) Francisella and Rickettsia and, b) Francisella and Cutibacterium. Lastly, mapping the distributions of bird species parasitized during spring migrations highlighted geographic hotspots where migratory songbirds could disperse ticks and their pathogens at stopover sites or upon arrival to their breeding grounds, the latter showing means dispersal distances from 421-5003 kilometers. These findings strongly highlight the potential role of migratory birds in the epidemiology of tick-borne pathogens.

6.
Integr Comp Biol ; 61(3): 1216-1236, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34240165

RESUMEN

Artificial light at night (ALAN) on tall or upward-pointed lighting installations affects the flight behavior of night-migrating birds. We hypothesized that common low-rise lights pointing downward also affect the movement of nocturnal migrants. We predicted that birds in flight will react close to low-rise lights, and be attracted and grounded near light sources, with a stronger effect on juveniles during their autumn migration. We conducted a controlled longitudinal experiment with light-emitting diode floodlights and considered nearby structures that turn on lights at night. We analyzed 1501 high-resolution 3D nocturnal flight paths of free-flying migrants and diurnally captured 758-2009 birds around experimental lights during spring and autumn 2016, and spring 2017. We identified change points along flight paths where birds turned horizontally or vertically, and we considered these indicative of reactions. Flight paths with and without reactions were generally closer to our experimental site in spring than in autumn when the lights were on. Reactions were up to 40% more likely to occur in autumn than in spring depending on the threshold magnitude of turning angle. Reactions in spring were up to ∼60% more likely to occur at ∼35 m from the lights than at >1.5 km. In autumn, some vertical reactions were ∼40% more likely to occur at ∼50 m from the lights than at >2.2 km. Interactions between distance to lights and visibility or cloud cover were consistent with known effects of ALAN on nocturnal migrants. Under poor visibility, reactions were up to 50% more likely to occur farthest from structures in spring, but up to 60% more likely to occur closest to lights in autumn. Thus, the effects of ALAN on night-migrating land birds are not limited to bright lights pointing upward or lights on tall structures in urban areas. Diurnal capture rates of birds were not different when lights were on or off for either season. To our knowledge, this is the first study to show that low-rise lights pointing downward affect night-migrating birds. Although the interpreted reactions constitute subtle modifications in the linearity of flight paths, we discuss future work that could verify whether the protection of nocturnal migrants with lights-out programs would have greater impact if implemented beyond urban areas and include management of low-rise lights.


Asunto(s)
Migración Animal , Aves , Iluminación , Animales , Estaciones del Año
7.
Mov Ecol ; 6: 2, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29340153

RESUMEN

BACKGROUND: Autumn latitudinal migrations generally exhibit one of two different temporal migration patterns: type 1 where southern populations migrate south before northern populations, or type 2 where northern populations overtake southern populations en route. The ruby-throated hummingbird (Archilochus colubris) is a species with an expansive breeding range, which allows opportunities to examine variation in the timing of migration. Our objective was to determine a relationship between natal origin of ruby-throated hummingbirds and arrival at a Gulf coast stopover site; and if so, what factors, such as differences in body size across the range as well as the cost of migration, might drive such a pattern. To carry out our objectives, we captured hummingbirds at a coastal stopover site during autumn migration, at which time we collected feathers from juveniles for analysis of hydrogen stable isotopes. Using the hydrogen stable isotope gradient of precipitation across North America and published hydrogen isotope values of feathers from populations of breeding ruby-throated hummingbirds, we assigned migrants to probable natal latitudes. RESULTS: Our results confirm that individuals from across the range (30-50° N) stopover along the Gulf of Mexico and there is a positive relationship between arrival day and latitude, suggesting a type 1 migration pattern. We also found no relationship between fuel load (proxy for migration cost) or fat-free body mass (proxy for body size) and natal latitude. CONCLUSIONS: Our results, coupled with previous work on the spatial migration patterns of hummingbirds, show a type 1 chain migration pattern. While the mechanisms we tested do not seem to influence the evolution of migratory patterns, other factors such as resource availability may play a prominent role in the evolution of this migration system.

8.
Sci Rep ; 7(1): 14280, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29079749

RESUMEN

During long-distance fall migrations, nocturnally migrating Swainson's Thrushes often stop on the northern Gulf of Mexico coast before flying across the Gulf. To minimize energetic costs, trans-Gulf migrants should stop over when they encounter crosswinds or headwinds, and depart with supportive tailwinds. However, time constrained migrants should be less selective, balancing costs of headwinds with benefits of continuing their migrations. To test the hypotheses that birds select supportive winds and that selectivity is mediated by seasonal time constraints, we examined whether local winds affected Swainson's Thrushes' arrival and departure at Ft. Morgan, Alabama, USA at annual, seasonal, and nightly time scales. Additionally, migrants could benefit from forecasting future wind conditions, crossing on nights when winds are consistently supportive across the Gulf, thereby avoiding the potentially lethal consequences of depleting their energetic reserves over water. To test whether birds forecast, we developed a movement model, calculated to what extent departure winds were predictive of future Gulf winds, and tested whether birds responded to predictability. Swainson's Thrushes were only slightly selective and did not appear to forecast. By following the simple rule of avoiding only the strongest headwinds at departure, Swainson's Thrushes could survive the 1500 km flight between Alabama and Veracruz, Mexico.


Asunto(s)
Migración Animal , Pájaros Cantores , Viento , Alabama , Animales , Toma de Decisiones , Predicción , Golfo de México , Modelos Teóricos , Método de Montecarlo , Fotoperiodo , Estaciones del Año
9.
PLoS One ; 10(5): e0123775, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25946335

RESUMEN

Bird habitat quality is often inferred from species abundance measures during the breeding and non-breeding season and used for conservation management decisions. However, during the non-breeding season age and sex classes often occupy different habitats which suggest a need for more habitat-specific data. Rusty Blackbird (Euphagus carolinus) is a forested wetland specialist wintering in bottomland hardwood forests in the south-eastern U. S. and belongs to the most steeply declining songbirds in the U.S. Little information is available to support priority birds such as the Rusty Blackbird wintering in this threatened habitat. We assessed age and sex distribution and body condition of Rusty Blackbirds among the three major habitats used by this species in the Lower Mississippi Alluvial Valley and also measured food availability. Overall, pecan groves had the highest biomass mainly driven by the amount of nuts. Invertebrate biomass was highest in forests but contributed only a small percentage to overall biomass. Age and sex classes were unevenly distributed among habitats with adult males primarily occupying pecan groves containing the highest nut biomass, females being found in forests which had the lowest nut biomass and young males primarily staying in forest fragments along creeks which had intermediate nut biomass. Males were in better body condition than females and were in slightly better condition in pecan groves. The results suggest that adult males occupy the highest quality habitat and may competitively exclude the other age and sex classes.


Asunto(s)
Distribución Animal , Bosques , Passeriformes/fisiología , Factores de Edad , Animales , Biomasa , Femenino , Cadena Alimentaria , Masculino , Passeriformes/crecimiento & desarrollo , Estaciones del Año , Factores Sexuales
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda