Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 22(23)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34884691

RESUMEN

Acute liver injury shares a common feature of hepatocytes death, immune system disorders, and cellular stress. Hepassocin (HPS) is a hepatokine that has ability to promote hepatocytes proliferation and to protect rats from D-galactose (D-Gal)- or carbon tetrachloride (CCl4)-induced liver injury by stimulating hepatocytes proliferation and preventing the high mortality rate, hepatocyte death, and hepatic inflammation. In this paper, we generated a pharmaceutical-grade recombinant human HPS using mammalian cells expression system and evaluated the effects of HPS administration on the pathogenesis of acute liver injury in monkey and mice. In the model mice of D-galactosamine (D-GalN) plus lipopolysaccharide (LPS)-induced liver injury, HPS treatment significantly reduced hepatocyte death and inflammation response, and consequently attenuated the development of acute liver failure. In the model monkey of D-GalN-induced liver injury, HPS administration promoted hepatocytes proliferation, prevented hepatocyte apoptosis and oxidation stress, and resulted in amelioration of liver injury. Furthermore, the primary pharmacokinetic study showed natural HPS possesses favorable pharmacokinetics; the acute toxicity study indicated no significant changes in behavioral, clinical, or histopathological parameters of HPS-treated mice, implying the clinical potential of HPS. Our results suggest that exogenous HPS has protective effects on acute liver injury in both mice and monkeys. HPS or HPS analogues and mimetics may provide novel drugs for the treatment of acute liver injury.


Asunto(s)
Fibrinógeno/uso terapéutico , Fallo Hepático Agudo/prevención & control , Animales , Células CHO , Cricetulus , Citocinas/sangre , Evaluación Preclínica de Medicamentos , Fibrinógeno/biosíntesis , Fibrinógeno/farmacocinética , Fibrinógeno/toxicidad , Galactosamina , Humanos , Lipopolisacáridos , Macaca fascicularis , Masculino , Ratones Endogámicos BALB C , Estrés Oxidativo , Distribución Aleatoria , Ratas Sprague-Dawley , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapéutico , Proteínas Recombinantes/toxicidad , Pruebas de Toxicidad Aguda
2.
Oncol Lett ; 23(6): 175, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35497935

RESUMEN

Malignant melanoma is a type of skin cancer caused by mutations in the DNA of melanocytes. Melanoma is relatively rare compared with other types of skin tumors, but has a highly aggressive biological behavior and consequently, a poorer prognosis. Therefore, the present study aimed to explore the role and mechanism of Kruppel-like factor 10 (KLF10) and acyl-CoA medium-chain synthetase 3 (ACSM3) in melanoma progression. KLF10 expression in melanoma tissues was predicted using Gene Expression Profiling Interactive Analysis (GEPIA). KLF10 expression in healthy and melanoma cells was also detected using reverse transcription-quantitative PCR and western blotting. Cell transfection was performed to overexpress KLF10 or silence ACSM3. Cell viability, proliferation, migration, invasion and apoptosis were detected using Cell Counting Kit-8, colony formation, wound healing, Transwell and TUNEL assays, respectively. The activity of the ACSM3 promoter was detected using a dual-luciferase reporter assay, and the relationship between KLF10 and ACSM3 was detected using the GEPIA database and chromatin immunoprecipitation (ChIP). The results demonstrated that KLF10 expression was significantly downregulated in melanoma cells, especially in A375 cells. Compared with the Ov-NC group, KLF10 overexpression significantly inhibited the proliferation, invasion and migration of melanoma cells and promoted their apoptosis. Similar to KLF10, ACSM3 was also downregulated in A375 cells compared with that in the HEM group, and the GEPIA database analysis and ChIP assay results demonstrated that KLF10 expression was positively associated with ACSM3 expression. Furthermore, silencing ACSM3 significantly reversed the effect of KLF10 overexpression on cell proliferation, invasion and migration, and ACSM3 knockdown increased the levels of phosphorylated (p)-PI3K and p-Akt compared with the levels in the Ov-KLF10 + sh-NC group. Overall, the present study suggested that KLF10 inhibited the proliferation, invasion and migration of melanoma cells by targeting ACSM3 via the PI3K/Akt signaling pathway.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda