Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Nanobiotechnology ; 21(1): 259, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550715

RESUMEN

Autogenous bone grafting has long been considered the gold standard for treating critical bone defects. However, its use is plagued by numerous drawbacks, such as limited supply, donor site morbidity, and restricted use for giant-sized defects. For this reason, there is an increasing need for effective bone substitutes to treat these defects. Mollusk nacre is a natural structure with outstanding mechanical property due to its notable "brick-and-mortar" architecture. Inspired by the nacre architecture, our team designed and fabricated a nacre-mimetic cerium-doped layered nano-hydroxyapatite/chitosan layered composite scaffold (CeHA/CS). Hydroxyapatite can provide a certain strength to the material like a brick. And as a polymer material, chitosan can slow down the force when the material is impacted, like an adhesive. As seen in natural nacre, the combination of these inorganic and organic components results in remarkable tensile strength and fracture toughness. Cerium ions have been demonstrated exceptional anti-osteoclastogenesis capabilities. Our scaffold featured a distinct layered HA/CS composite structure with intervals ranging from 50 to 200 µm, which provided a conducive environment for human bone marrow mesenchymal stem cell (hBMSC) adhesion and proliferation, allowing for in situ growth of newly formed bone tissue. In vitro, Western-blot and qPCR analyses showed that the CeHA/CS layered composite scaffolds significantly promoted the osteogenic process by upregulating the expressions of osteogenic-related genes such as RUNX2, OCN, and COL1, while inhibiting osteoclast differentiation, as indicated by reduced TRAP-positive osteoclasts and decreased bone resorption. In vivo, calvarial defects in rats demonstrated that the layered CeHA/CS scaffolds significantly accelerated bone regeneration at the defect site, and immunofluorescence indicated a lowered RANKL/OPG ratio. Overall, our results demonstrate that CeHA/CS scaffolds offer a promising platform for bone regeneration in critical defect management, as they promote osteogenesis and inhibit osteoclast activation.


Asunto(s)
Quitosano , Nácar , Ratas , Humanos , Animales , Quitosano/farmacología , Quitosano/química , Durapatita/farmacología , Durapatita/química , Andamios del Tejido/química , Nácar/farmacología , Regeneración Ósea , Osteogénesis , Transducción de Señal , Diferenciación Celular , Ingeniería de Tejidos/métodos
2.
Adv Exp Med Biol ; 1354: 161-176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34807442

RESUMEN

The past decade has seen an expansion of studies on the role of gut microbiome in piglet nutrition and health. With the help of culture-independent sequencing techniques, the colonization of gut microbiota and their implication in physiology are being investigated in depth. Immediately after birth, the microbes begin to colonize following an age-dependent trajectory, which can be modified by maternal environment, diet, antibiotics, and fecal microbiota transplantation. The early-life gut microbiome is relatively simple but enriched with huge metabolic potential to utilize milk oligosaccharides and affect the epithelial function. After weaning, the gut microbiome develops towards a gradual adaptation to the introduction of solid food, with an enhanced ability to metabolize amino acids, fibers, and bile acids. Here we summarize the compositional and functional difference of the gut microbiome in the keystone developing phases, with a specific focus on the use of different nutritional approaches based on the phase-specific gut microbiome.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Trasplante de Microbiota Fecal , Heces , Intestinos , Porcinos
3.
BMC Vet Res ; 17(1): 190, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980225

RESUMEN

BACKGROUND: Pseudorabies virus (PRV) is a preferred vector for recombinant vaccine construction. Previously, we generated a TK&gE-deleted PRV (PRVΔTK&gE-AH02) based on a virulent PRV AH02LA strain. It was shown to be safe for 1-day-old piglets with maternal PRV antibodies and 4 ~ 5 week-old PRV antibody negative piglets and provide rapid and 100 % protection in weaned pigs against lethal challenge with the PRV variant strain. It suggests that PRVTK&gE-AH02 may be a promising live vaccine vector for construction of recombinant vaccine in pigs. However, insertion site, as a main factor, may affect foreign gene expression. RESULTS: In this study, we constructed four recombinant PRV-S bacterial artificial chromosomes (BACs) carrying the same spike (S) expression cassette of a variant porcine epidemic diarrhea virus strain in different noncoding regions (UL11-10, UL35-36, UL46-27 or US2-1) from AH02LA BAC with TK, gE and gI deletion. The successful expression of S gene (UL11-10, UL35-36 and UL46-27) in recombinant viruses was confirmed by virus rescue, PCR, real-time PCR and indirect immunofluorescence. We observed higher S gene mRNA expression level in swine testicular cells infected with PRV-S(UL11-10)ΔTK/gE and PRV-S(UL35-36)ΔTK/gE compared to that of PRV-S(UL46-27)ΔTK/gE at 6 h post infection (P < 0.05). Moreover, at 12 h post infection, cells infected with PRV-S(UL11-10)ΔTK/gE exhibited higher S gene mRNA expression than those infected with PRV-S(UL35-36)ΔTK/gE (P = 0.097) and PRV-S(UL46-27)ΔTK/gE (P < 0.05). Recovered vectored mutant PRV-S (UL11-10, UL35-36 and UL46-27) exhibited similar growth kinetics to the parental virus (PRVΔTK&gE-AH02). CONCLUSIONS: This study focuses on identification of suitable sites for insertion of foreign genes in PRV genome, which laids a foundation for future development of recombinant PRV vaccines.


Asunto(s)
Herpesvirus Suido 1/genética , Mutagénesis Insercional/métodos , Virus de la Diarrea Epidémica Porcina/genética , Animales , Células Cultivadas , Cromosomas Artificiales Bacterianos , Expresión Génica , ARN Mensajero/metabolismo , Recombinación Genética , Porcinos
4.
J Sci Food Agric ; 100(1): 235-244, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31512251

RESUMEN

BACKGROUND: This study evaluated the effects of early antibiotic exposure (EAE) on subsequent amino acid (AA) profiles and small intestinal AA transporter and receptor expression level in pigs with different dietary crude protein (CP) levels. Eighteen litters of piglets were fed creep feed diets, either with or without antibiotics while with sow on day 7. The pigs were weaned at day 23 and fed the same diets until day 42, when random pigs within each group were offered a normal- or low-CP diet, thereby creating four groups. On day 120, the pigs were euthanized, and jejunal and ileal mucosa and digesta were collected for gene-expression and AA-concentration analysis. RESULTS: With the normal-CP diet, EAE increased (P < 0.05) the concentrations of six essential amino acids (EAA) and three non-essential amino acids (NEAA) in serum, four EAAs and four NEAAs in jejunal mucosa, one EAA and two NEAAs in ileal mucosa, five EAAs and three NEAAs in jejunal digesta, and three EAAs and two NEAAs in ileal digesta. Early antibiotic exposure upregulated (P < 0.05) CAT1, ASCT2, ATB0,+ , CaSR, T1R1, and T1R3 expression in the jejunum, downregulated PepT1 expression with a normal-CP diet. It upregulated (P < 0.05) the expressions of CAT1, ATB0,+ , ATP1A1, and T1R3 in the ileum with a normal-CP diet. CONCLUSION: These results suggest that EAE has long-term effects on AA profiles, mainly in the jejunum and serum, by increasing AA transporter expression in the intestine, and that these effects may be influenced by dietary CP levels. © 2019 Society of Chemical Industry.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Antibacterianos/efectos adversos , Mucosa Intestinal/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética , Porcinos/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/química , Alimentación Animal/análisis , Animales , Antibacterianos/administración & dosificación , Proteínas en la Dieta/análisis , Proteínas en la Dieta/metabolismo , Femenino , Expresión Génica/efectos de los fármacos , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/metabolismo , Masculino , Distribución Aleatoria , Receptores Acoplados a Proteínas G/metabolismo , Porcinos/genética , Porcinos/crecimiento & desarrollo , Factores de Tiempo
5.
BMC Vet Res ; 15(1): 2, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30606159

RESUMEN

BACKGROUND: Since 2011, pseudorabies caused by a variant PRV has re-emerged in many Chinese Bartha-K61-vaccinated pig farms. An efficacious vaccine is necessary to control this disease. We described the construction of a gD&gC-substituted pseudorabies virus (PRV B-gD&gCS) from the Bartha-K61 (as backbone) and AH02LA strain (as template for gD and gC genes) through bacterial artificial chromosome (BAC) technology using homologous recombination. The growth kinetics of PRV B-gD&gCS was compared with Bartha-K61. Its safety was evaluated in 28-day-old piglets. Protection efficacy was tested in piglets by lethal challenge with AH02LA at 7 days post vaccination, including body temperature, clinical symptoms, virus shedding, mortality rate, and lung lesions. RESULTS: The results showed that a BAC clone of Bartha-K61 and a B-gD&gCS clone were successfully generated. The growth kinetics of PRV B-gD&gCS strain on ST (Swine testicular) cells was similar to that of the Bartha-K61 strain. No piglets inoculated intramuscularly with PRV B-gD&gCS strain exhibited any clinical symptoms or virus shedding. After AH02LA challenge, all piglets in PRV B-gD&gCS and Bartha-K61 groups (n = 5 each) survived without exhibiting any clinical symptoms and high body temperature. More importantly, PRV B-gD&gCS strain completely prevented virus shedding in 2 piglets and reduced virus shedding post challenge in the other 3 piglets as compared with Bartha-K61 group. CONCLUSIONS: Our results suggest that PRV B-gD&gCS strain is a promising vaccine candidate for the effective control of current severe epidemic pseudorabies in China.


Asunto(s)
Herpesvirus Suido 1/inmunología , Vacunas contra la Seudorrabia/inmunología , Seudorrabia/prevención & control , Enfermedades de los Porcinos/prevención & control , Animales , Animales Recién Nacidos/inmunología , Animales Recién Nacidos/virología , China , Variación Genética/genética , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/fisiología , Seudorrabia/inmunología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Vacunas Sintéticas , Esparcimiento de Virus
6.
Amino Acids ; 49(4): 771-781, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28101652

RESUMEN

In-feed antibiotics have been used to promote growth in piglets, but its impact on metabolomics profiles associated with host metabolism is largely unknown. In this study, to test the hypothesis that antibiotic treatment may affect metabolite composition both in the gut and host biofluids, metabolomics profiles were analyzed in antibiotic-treated piglets. Piglets were fed a corn-soy basal diet with or without in-feed antibiotics from postnatal day 7 to day 42. The serum biochemical parameters, metabolomics profiles of the serum, urine, and jejunal digesta, and indicators of microbial metabolism (short-chain fatty acids and biogenic amines) were analyzed. Compared to the control group, antibiotics treatment did not have significant effects on serum biochemical parameters except that it increased (P < 0.05) the concentration of urea. Antibiotics treatment increased the relative concentrations of metabolites involved in amino-acid metabolism in the serum, while decreased the relative concentrations of most amino acids in the jejunal content. Antibiotics reduced urinary 2-ketoisocaproate and hippurate. Furthermore, antibiotics decreased (P < 0.05) the concentrations of propionate and butyrate in the feces. Antibiotics significantly affected the concentrations of biogenic amines, which are derived from microbial amino-acid metabolism. The three major amines, putrescine, cadaverine, and spermidine, were all increased (P < 0.05) in the large intestine of antibiotics-treated piglets. These results identified the phenomena that in-feed antibiotics may have significant impact on the metabolomic markers of amino-acid metabolism in piglets.


Asunto(s)
Alimentación Animal , Antibacterianos/farmacología , Metabolómica , Animales , Antibacterianos/administración & dosificación , Líquidos Corporales/metabolismo , Yeyuno/metabolismo , Porcinos
7.
Amino Acids ; 49(9): 1587-1599, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28623466

RESUMEN

In-feed antibiotics have been commonly used to promote the growth performance of piglets. The antibiotics can increase protein utilization, but the underlying mechanism is largely unknown. The present study investigated the effects of in-feed antibiotics on intestinal AA transporters and receptors to test the hypothesis that the alteration of circulating AA profiles may be concomitant with the change of intestinal AA transporters and receptors. Sixteen litters of piglets at day 7 started to receive creep feed with (Antibiotic) or without (Control) antibiotic. Piglets were weaned at day 23 after birth, and fed the same diets until day 42. In-feed antibiotics did not affect the BW of 23-day-old (P = 0.248), or 42-day-old piglets (P = 0.089), but increased the weight gain to feed ratio from day 23 to 42 (P = 0.020). At day 42 after birth, antibiotic treatment increased the concentrations of most AAs in serum (P < 0.05), and decreased the concentrations of most AAs in jejunal and ileal digesta. Antibiotics upregulated (P < 0.05) the mRNA expression levels for jejunal AAs transporters (CAT1, EAAC1, ASCT2, y+LAT1), peptide transporters (PepT1), and Na+-K+-ATPase (ATP1A1), and ileal AA transporters (ASCT2, y+LAT1, b0,+AT, and B0AT1), and ATP1A1. The antibiotics also upregulated the mRNA expression of jejunal AAs receptors T1R3 and CaSR, and ileal T1R3. Protein expression levels for jejunal AA transporters (EAAC1, b0,+AT, and ASCT2) and PepT1 were also upregulated. Correlation analysis revealed that the alterations of AA profiles in serum after the in-feed antibiotics were correlated with the upregulations of mRNA expression levels for key AA transporters and receptors in the small intestine. In conclusion, the in-feed antibiotics increased serum level of most AAs and decreased most AAs in the small intestine. These changes correlated with the upregulations of mRNA expression levels for key AA transporters and receptors in the small intestine. The findings provide further insights into the mechanism of in-feed antibiotics, which may provide new framework for designing alternatives to antibiotics in animal feed in the future.


Asunto(s)
Aminoácidos/sangre , Antibacterianos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Aumento de Peso/efectos de los fármacos , Sistema de Transporte de Aminoácidos ASC/agonistas , Sistema de Transporte de Aminoácidos ASC/genética , Sistema de Transporte de Aminoácidos ASC/metabolismo , Alimentación Animal/análisis , Animales , Animales Recién Nacidos , Transporte Biológico/efectos de los fármacos , Transportador 3 de Aminoácidos Excitadores/agonistas , Transportador 3 de Aminoácidos Excitadores/genética , Transportador 3 de Aminoácidos Excitadores/metabolismo , Kitasamicina/farmacología , Transportador de Aminoácidos Neutros Grandes 1/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Oxitetraciclina/farmacología , Transportador de Péptidos 1/agonistas , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , Quinoxalinas/farmacología , ARN Mensajero/agonistas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Sensibles al Calcio/agonistas , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Porcinos , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Destete
8.
Appl Microbiol Biotechnol ; 101(6): 2493-2505, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27913852

RESUMEN

The study aimed to evaluate the effects of early antibiotic intervention (EAI) on bacterial fermentation patterns and mucosal immune markers in the colon of pigs with different protein level diets. Eighteen litters of piglets at day (d) 7 were fed creep feed without or with growth promoting antibiotics until d 42. At d 42, pigs within each group were further randomly assigned to a normal- or low-crude protein (CP) diet. At d 77 and d 120, five pigs per group were slaughtered for analyzing colonic bacteria, metabolites, and mucosal gene expressions. Results showed that low-CP diet increased propionate and butyrate concentrations at d 77 but reduced ammonia and phenol concentrations (P < 0.05). EAI increased p-cresol and indole concentrations under normal-CP diet at d 77 (P < 0.05). Low-CP diet significantly affected (P < 0.05) some bacteria groups (Firmicutes, Clostridium cluster IV, Clostridium cluster XIVa, Escherichia coli, and Lactobacillus), but EAI showed limited effects. Low-CP diet down-regulated gene expressions of pro-inflammatory cytokines, toll-like receptor (TLR4), myeloid differentiating factor 88 (MyD88), and nuclear factor-κB p65 (NF-κB p65) (P < 0.05). EAI up-regulated mRNA expressions of interleukin-8 (IL-8) and interferon-γ (IFN-γ) under normal-CP diet at d 77 (P < 0.05). Furthermore, reductions of E. coli and ammonia under low-CP diet were positively correlated with down-regulated gene expressions of pro-inflammatory cytokines, which were positively correlated with the down-regulated TLR4-MyD88-NF-κB signaling pathway. In conclusion, EAI had short-term effects under normal-CP diet with increased aromatic amino acid fermentation and gene expressions of pro-inflammatory cytokines. Low-CP diet markedly reduced protein fermentation, modified microbial communities, and down-regulated gene expressions of pro-inflammatory cytokines possibly via down-regulating TLR4-MyD88-NF-κB signaling pathway.


Asunto(s)
Antibacterianos/farmacología , Colon/efectos de los fármacos , Proteínas en la Dieta/administración & dosificación , Fermentación/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Amoníaco/metabolismo , Alimentación Animal/análisis , Animales , Animales Recién Nacidos , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Ácido Butírico/metabolismo , Colon/metabolismo , Colon/microbiología , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Fenoles/metabolismo , Filogenia , Propionatos/metabolismo , Transducción de Señal , Porcinos , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Destete
9.
Anaerobe ; 42: 188-196, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27816724

RESUMEN

This study investigated the effects of early antibiotic administration (EAA) on cecal bacterial communities and their metabolic profiles in pigs fed diets with different protein levels. Eighteen litters (total 180) of piglets on day (d) 7 were fed either a commercial creep feed or commercial creep feed + antibiotic (Olaquindox, Oxytetracycline Calcium and Kitasamycin) until d 42. On d 42, pigs within each group were further randomly fed a normal crude protein (CP) diet (20% and 18% CP from d 42 to d 77 and d 77 to d 120, respectively) or a low-CP diet (16% and 14% CP from d 42 to d 77 and d 77 to d 120, respectively), generating 4 groups, control-low CP (Con-LP), control-normal CP (Con-NP), antibiotic-low CP (Ant-LP) and antibiotic-normal CP (Ant-NP), respectively. On d 77 and d 120, 5 pigs per group were slaughtered and cecal materials were collected for bacterial analysis. With cecal bacteria, principle component analysis (PCA) of the denaturing gradient gel electrophoresis (DGGE) profile showed two distinct groups of samples from low-CP diet and samples from normal-CP diet. Real-time PCR showed that EAA did not have significant effect on major bacterial groups, only showed significant interactions (P < 0.05) with CP level for Lactobacillus counts on d 77 and Clostridium cluster XIVa counts on d 120 with higher values in the Con-NP group compared to the Ant-NP groups. Low-CP diet increased (P < 0.05) short-chain fatty acids (SCFA) producing bacteria counts (Bacteroidetes on d 77 and d 120; Clostridium cluster IV and Clostridium cluster XIVa on d 77), but decreased (P < 0.05) Escherichia coli counts on d 77 and d 120. For metabolites, EAA increased (P < 0.05) protein fermentation products (p-cresol, indole and skatole on d 77; ammonia, putrescine and spermidine on d 120), and showed significant interactions (P < 0.05) with CP level for p-cresol and skatole concentrations on d 77 and putrescine and spermidine concentrations on d 120 with higher values in the Ant-LP group compared to the Con-LP groups. Low-CP diet increased (P < 0.05) SCFA concentration (propionate and butyrate) on d 77, but reduced (P < 0.05) the protein fermentation products (ammonia, phenol and indole on d 77; branched chain fatty acid (BCFA), ammonia, tyramine, cadaverine and indole on d 120). These results indicate that EAA had less effect on bacterial communities, but increased bacterial fermentation of protein in the cecum under low-CP diet. Low-CP diet altered bacterial communities with an increase in the counts of SCFA-producing bacteria and a decrease in the counts of Escherichia coli, and markedly reduced the protein fermentation products.


Asunto(s)
Antibacterianos/farmacología , Dieta/métodos , Proteínas en la Dieta/administración & dosificación , Kitasamicina/farmacología , Oxitetraciclina/farmacología , Quinoxalinas/farmacología , Alimentación Animal/análisis , Animales , Animales Lactantes , Bacteroidetes/efectos de los fármacos , Bacteroidetes/crecimiento & desarrollo , Bacteroidetes/metabolismo , Ciego/efectos de los fármacos , Ciego/microbiología , Clostridium/efectos de los fármacos , Clostridium/crecimiento & desarrollo , Clostridium/metabolismo , Proteínas en la Dieta/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Fermentación/efectos de los fármacos , Microbioma Gastrointestinal , Lactobacillus/efectos de los fármacos , Lactobacillus/crecimiento & desarrollo , Lactobacillus/metabolismo , Análisis de Componente Principal , Porcinos , Factores de Tiempo , Destete
10.
Front Microbiol ; 14: 1248573, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881250

RESUMEN

Since 2011, pseudorabies based on the pseudorabies virus (PRV) variant has emerged as a serious health issue in pig farms in China. The PRV gE/TK or gE/gI/TK deletion strains protect against emerging PRV variants. However, these variants may cause lethal infections in newborn piglets without PRV antibodies. Previous studies have shown that codon deoptimization of a virulence gene causes virus attenuation. Accordingly, we deoptimized US3-S (US3 gene encoding a short isoform that represents approximately 95% of the total US3 transcription) and UL56 genes (first 10 or all codons) of PRV gE/TK deletion strain (PRVΔTK&gE-AH02) to generate six recombinant PRVs through bacterial artificial chromosome technology. In swine testicular cells, recombinant PRVs with all codon deoptimization of US3-S or UL56 genes were grown to lower titers than the parental virus. Notably, US3-S or UL56 with all codon deoptimization reduced mRNA and protein expressions. Subsequently, the safety and immunogenicity of recombinant PRVs with codon deoptimization of US3-S or UL56 are evaluated as vaccine candidates in mice and piglets. The mice inoculated with recombinant PRVs with codon deoptimization of US3-S or UL56 showed exceptional survival ability without severe clinical signs. All codons deoptimized (US3-S and UL56) significantly decreased virus load and attenuated pathological changes in the brains of the mice. Moreover, the protection efficiency offered by recombinant PRVs with codon deoptimization of US3-S or UL56 showed similar effects to PRVΔTK&gE-AH02. Remarkably, the 1-day-old PRV antibody-negative piglets inoculated with PRVΔTK&gE-US3-ST-CD (a recombinant PRV with all codon deoptimization of US3-S) presented no abnormal clinical symptoms, including fever. The piglets inoculated with PRVΔTK&gE-US3-ST-CD showed a high serum neutralization index against the PRV variant. In conclusion, these results suggest using codon deoptimization to generate innovative live attenuated PRV vaccine candidates.

11.
Vaccines (Basel) ; 11(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37631856

RESUMEN

In this study, we applied bacterial artificial chromosome (BAC) technology with PRVΔTK/gE/gI as the base material to replace the first, central, and terminal segments of the US3 gene with codon-deoptimized fragments via two-step Red-mediated recombination in E. coli GS1783 cells. The three constructed BACs were co-transfected with gI and part of gE fragments carrying homologous sequences (gI+gE'), respectively, in swine testicular cells. These three recombinant viruses with US3 codon de-optimization ((PRVΔTK&gE-US3deop-1, PRVΔTK&gE-US3deop-2, and PRVΔTK&gE-US3deop-3) were obtained and purified. These three recombinant viruses exhibited similar growth kinetics to the parental AH02LA strain, stably retained the deletion of TK and gE gene fragments, and stably inherited the recoded US3. Mice were inoculated intraperitoneally with the three recombinant viruses or control virus PRVΔTK&gEAH02 at a 107.0 TCID50 dose. Mice immunized with PRVΔTK&gE-US3deop-1 did not develop clinical signs and had a decreased virus load and attenuated pathological changes in the lungs and brain compared to the control group. Moreover, immunized mice were challenged with 100 LD50 of the AH02LA strain, and PRVΔTK&gE-US3deop-1 provided similar protection to that of the control virus PRVΔTK&gEAH02. Finally, PRVΔTK&gE-US3deop-1 was injected intramuscularly into 1-day-old PRV-negative piglets at a dose of 106.0 TCID50. Immunized piglets showed only slight temperature reactions and mild clinical signs. However, high levels of seroneutralizing antibody were produced at 14 and 21 days post-immunization. In addition, the immunization of PRVΔTK&gE-US3deop-1 at a dose of 105.0 TCID50 provided complete clinical protection and prevented virus shedding in piglets challenged by 106.5 TCID50 of the PRV AH02LA variant at 1 week post immunization. Together, these findings suggest that PRVΔTK&gE-US3deop-1 displays great potential as a vaccine candidate.

12.
Virus Res ; 313: 198740, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35271886

RESUMEN

A variant of pseudorabies virus (PRV) with enhanced pathogenicity have emerged in many vaccinated swine herds in China since 2011. PRVΔTK&gE-AH02, a previously described TK/gE deletion PRV strain arising from the PRV variant AH02LA, has been shown to be safe for PRV antibody positive piglets, and could provide protection against emerging PRV variants. However, inoculation of PRVΔTK&gE-AH02 into PRV antibody negative neonatal piglets caused lethal infection. In the study, in order to attenuate the virulence of PRVΔTK&gE-AH02, an additional deletion of 1∼x223C13 bp of US3 (the serine/threonine kinase, PK) gene was performed to generate a TK/PK/gE deletion PRV variant (PRVΔTK&PK&gE-AH02). We found that the growth kinetics of PRVΔTK&PK&gE-AH02 was similar to that of PRVΔTK&gE-AH02. Mice inoculated with PRVΔTK&PK&gE-AH02 in different dose (104.0∼x223C107.0 TCID50) survived and showed no observable clinical symptoms. No virus was detected in the brains or lungs of the mice inoculated with PRVΔTK&PK&gE-AH02. Moreover, mice inoculated with PRVΔTK&PK&gE-AH02 and PRVΔTK&gE-AH02 showed similar survival against virulent PRV AH02LA strain. Importantly, safety test showed no clinical symptoms in PRV antibody negative neonatal piglets that were intranasally inoculated with PRVΔTK&PK&gE-AH02 at a dose of 106.5 TCID50, indicating that the virulence of PRVΔTK&PK&gE-AH02 was significantly mitigated. Piglets immunized with PRVΔTK&PK&gE-AH02 exhibited a high serum neutralization index. All piglets inoculated intramuscularly (I.M.) with 1 mL (105.0 TCID50) PRVΔTK&PK&gE-AH02 were completely protected against challenge intranasally (I.N.) with 2LD50 (106.5TCID50) PRV AH02LA strain. In summary, our results indicate that deletion of 1∼x223C13 bp of US3 (PK) can provide a useful way for further attenuation of PRV and the PRVΔTK&PK&gE-AH02 might be a promising vaccine candidate for controlling of the virulent PRV variants in China.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Vacunas , Animales , Eliminación de Gen , Herpesvirus Suido 1/genética , Ratones , Seudorrabia/prevención & control , Vacunas contra la Seudorrabia , Porcinos , Proteínas del Envoltorio Viral/genética
13.
Vaccines (Basel) ; 10(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36146468

RESUMEN

The increased virulence of infectious bursal disease virus (IBDV) is a threat to the chicken industry. The construction of novel herpesvirus of turkey-vectored (HVT) vaccines expressing VP2 of virulent IBDV may be a promising vaccine candidate for controlling this serious disease in chickens. We generated a novel infectious clone of HVT Fc-126 by inserting mini-F sequences in lieu of the glycoprotein C (gC) gene. Based on this bacterial artificial chromosome (BAC), a VP2 expression cassette containing the pMCMV IE promoter and a VP2 sequence from the virulent IBDV NJ09 strain was inserted into the noncoding area between the UL55 and UL56 genes to generate the HVT vector VP2 recombinant, named HVT-VP2-09. The recovered vectored mutant HVT-VP2-09 exhibited higher titers (p = 0.0202 at 36 h) or similar growth kinetics to the parental virus HVT Fc-126 (p = 0.1181 at 48 h and p = 0.1296 at 64 h). The high reactivation ability and strong expression of VP2 by HVT-VP2-09 in chicken embryo fibroblasts (CEFs) were confirmed by indirect immunofluorescence (IFA) and Western blotting. The AGP antibodies against IBDV were detected beginning at 3 weeks post-inoculation (P.I.) of HVT-VP2-09 in 1-day-old SPF chickens. Seven of ten chickens immunized with HVT-VP2-09 were protected post-challenge (P.C.) with the virulent IBDV NJ09 strain. In contrast, all chickens in the challenge control group showed typical IBD lesions in bursals, and eight of ten died P.C. In this study, we demonstrated that (i) a novel HVT BAC with the whole genome of the Fc-126 strain was obtained with the insertion of mini-F sequences in lieu of the gC gene; (ii) HVT-VP2-09 harboring the VP2 expression cassette from virulent IBDV exhibited in vitro growth properties similar to those of the parental HVT virus in CEF cells; and (iii) HVT-VP2-09 can provide efficient protection against the IBDV NJ09 strain.

14.
J Hazard Mater ; 386: 121999, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31901547

RESUMEN

Design and fabrication of novel adsorbents to remove heavy metal ions in continuous-flow wastewater remained a great challenge. Inspired by the hierarchical architecture and biomineralization process of nacre, we firstly constructed hydroxyapatite/chitosan (HA/CH) layered composites. The brick-and-mortar characteristics of HA/CH layered composites improved their flexure strengths up to 3.08 MPa so that the hierarchical architectures could not be destroyed even under high-pressure drop. HA/CH layered composites had the hierarchical microstructures analogous to plate towers, facilitating the separation of adsorbents from water. The interlaminar macropores in the layered composites contributed to the transfer of continuous-flow wastewater. The Pb(II), Cd(II) and Hg(II) ions in wastewater showed similar adsorption trends, and their adsorption amounts arrived at 295.96, 192.37 and 127.38 mg g-1 after 6 days, respectively. Among the above heavy metal ions, the HA/CH layered composites possessed the best Pb(II) adsorption ability due to forming lead hydroxyapatite rods and CH-Pb complexes. The Pb(II) adsorption performances of HA/CH layered composites matched well with Elovich equation, pseudo-first-order and pseudo-second-order kinetics models, revealing the heterogeneous chemisorption mechanism at adsorbent/wastewater interfaces. Therefore, the nacre-like HA/CH layered composites with appropriate mechanical property and excellent adsorption capacity are a novel platform for heavy metal removal in continuous-flow wastewater.

15.
ACS Appl Mater Interfaces ; 12(24): 27202-27209, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32436378

RESUMEN

Carbon-coated SiOx microparticles (SiOx/C) demonstrate attractive potential for anode use in high-energy-density lithium-ion batteries due to high capacity and proper cycling stability. However, the excessive irreversible consumption of Li ions during the initial cycling remains a serious challenge arising from the limited lithium in full cells. Here, we endow SiOx/C anode with high initial Coulombic efficiency using the chemical pre-lithiation strategy. The lithium silicate is uniformly pregenerated in SiOx/C microparticles, which could effectively counteract the irreversible consumption of Li ions and avoid the complicated pre-lithiation process. Moreover, this strategy guarantees the structural integrity and processability of anode materials because of the homogeneous Li-organic complex solution pre-lithiation and high-temperature calcination process. The obtained SiOx/C microparticles can be applied as anode materials by directly mixing with commercial graphite, which demonstrates proper specific capacity, high initial Coulombic efficiency, and excellent cycling performance. Furthermore, the pouch cells using LiNi0.8Co0.1Mn0.1O2 cathodes and the as-prepared anodes exhibit high energy density (301 Wh kg-1) and satisfactory cycling stability (93.3% capacity retention after 100 cycles).

16.
Sci Technol Adv Mater ; 10(6): 065001, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27877311

RESUMEN

Porous germanium films with good adhesion to the substrate were produced by annealing GeO2 ceramic films in H2 atmosphere. The reduction of GeO2 started at the top of a film and resulted in a Ge layer with a highly porous surface. TEM and Raman measurements reveal small Ge crystallites at the top layer and a higher degree of crystallinity at the bottom part of the Ge film; visible photoluminescence was detected from the small crystallites. Porous Ge films exhibit high density of holes (1020 cm-3) and a maximum of Hall mobility at ∼225 K. Their p-type conductivity is dominated by the defect scattering mechanism.

17.
Viruses ; 11(6)2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31195631

RESUMEN

Pseudorabies virus (PRV) variants broke out in china since 2011, causing high fever, respiratory distress, systemic neurological symptoms, and diarrhea in piglets. This study investigated the effect of intranasal PRV variant (AH02LA) infection on ileal and colonic bacterial communities and immune status in piglets. Ten piglets (free of PRV) were assigned to PRV variant and control groups (uninfected). At day 5 after inoculation, all piglets were euthanized. No PRV was detected in the ileal and colonic mucosa. In the PRV group, we observed up-regulation of specific cytokines gene expression, down-regulation of intestinal barrier-related gene expression, and reduction of secretory immunoglobulin A (sIgA) concentration in the ileum and colon. PRV infection increased the diversity of ileal bacterial community composition. PRV infection reduced the abundance of some beneficial bacteria (Lactobacillus species in the ileum and colon; butyrate-producing bacteria species in the colon) and increased the abundance of potentially pathogenic Fusobacterium nucleatum in the ileum and Sphingomonas paucimobilis in the colon. Moreover, PRV infection decreased concentrations of the beneficial lactate in the ileum and butyrate in the colon. However, this study does not allow to evaluate whether the observed changes are directly due to the PRV infection or rather to indirect effects (fever, clinical signs and changes in diet), and will be our next research content. In summary, our findings provide evidence that intranasal PRV infection directly or indirectly brings gut health risks and implications, although no PRV was detected in the ileum and colon.


Asunto(s)
Colon/microbiología , Herpesvirus Suido 1 , Íleon/microbiología , Enfermedades de los Porcinos/virología , Administración Intranasal , Animales , Butiratos/análisis , Colon/inmunología , Colon/metabolismo , Colon/virología , Citocinas/metabolismo , Fusobacterium/crecimiento & desarrollo , Íleon/inmunología , Íleon/metabolismo , Íleon/virología , Inmunoglobulina A/metabolismo , Ácido Láctico/análisis , Lactobacillus/crecimiento & desarrollo , Interacciones Microbianas , Microbiota , Seudorrabia/patología , Seudorrabia/virología , Sphingomonas/crecimiento & desarrollo , Porcinos
18.
Front Microbiol ; 10: 2957, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31969868

RESUMEN

Infections due to carbapenem-resistant NDM-producing Escherichia coli represent a major therapeutic challenge, especially in situations of pre-existing colistin resistance. The aim of this study was to investigate combinatorial pharmacodynamics of colistin and tigecycline against E. coli harboring bla NDM- 5 and mcr-1, with possible mechanisms explored as well. Colistin disrupted the bacterial outer-membrane and facilitated tigecycline uptake largely independent of mcr-1 expression, which allowed a potentiation of the tigecycline-colistin combination. A concentration-dependent decrease in colistin MIC and EC50 was observed with increasing tigecycline levels. Clinically relevant concentrations of colistin and tigecycline combination significantly decreased bacterial density of colistin-resistant E. coli by 3.9 to 6.1-log10 cfu/mL over 48 h at both inoculums of 106 and 108 cfu/mL, and were more active than each drug alone (P < 0.01). Importantly, colistin and tigecycline combination therapy was efficacious in the murine thigh infection model at clinically relevant doses, resulting in >2.0-log10cfu/thigh reduction in bacterial density compared to each monotherapy. These data suggest that the use of colistin and tigecycline combination can provide a therapeutic alternative for infection caused by multidrug-resistant E. coli that harbored both bla NDM- 5 and mcr-1.

19.
Artículo en Inglés | MEDLINE | ID: mdl-29988607

RESUMEN

BACKGROUND: Compared with oral antibiotics (primarily disrupt foregut microbiota), the present study used antibiotics with ileum terminal infusion to disrupt the hindgut microbiota, and investigated the changes in specific bacterial composition and immune indexes in the jejunum and colon, and serum of growing pigs. Twelve barrows (45 d of age, 12.08 ± 0.28 kg) fitted with a T-cannula at the terminal ileum, were randomly assigned to two groups and infused either saline without antibiotics (Control) or with antibiotics (Antibiotic) at the terminal ileum. After 25 d experiment, all pigs were euthanized for analyzing bacterial composition and immune status. RESULTS: Ileum terminal antibiotic infusion (ITAI) altered dominant bacteria counts, with a decrease in Bifidobacterium, Clostridium cluster IV and Clostridium cluster IV in the colon (P < 0.05), and an increase in Escherichia coli in the jejunum (P < 0.05). ITAI decreased (P < 0.05) short-chain fatty acids concentrations in the colon. ITAI decreased interleukin-8 (IL-8), IL-10 and secretory immunoglobulin A (sIgA) concentrations, and down-regulated IL-10, Mucin-1 (MUC1), Mucin-2 (MUC2) and zonula occludens-1 (ZO-1) mRNA expression in the colonic mucosa (P < 0.05). In the jejunal mucosa, ITAI decreased interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), sIgA and IgG levels together with down-regulation of IFN-γ, TNF-α, MUC2 and ZO-1 mRNA expression (P < 0.05). Furthermore, ITAI decreased IL-10, INF-γ, TNF-α, IgA and IgG concentrations in serum (P < 0.05). Correlation analysis revealed that the change in intestinal microbiota was correlated with alterations of Ig and cytokines. CONCLUSIONS: ITAI affected jejunal and colonic specific bacteria counts, and altered some immune markers levels in the jejunal and colonic mucosa and serum. These findings implicate the potential contribution of hindgut bacteria to immune response in the intestinal mucosa and serum of growing pigs.

20.
Front Microbiol ; 9: 1166, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29899739

RESUMEN

In modern swine husbandry systems, antibiotics have been used as growth promoters for piglets during suckling or weaning period. However, while early colonization of intestinal microbiota has been regarded crucial for the host's later life performance and well-being, little is known about the impact of antibiotics on intestinal microbiota in suckling piglets. The present study aimed to investigate the effects of early antibiotics exposure on gut microbiota and microbial metabolism of suckling piglets. Sixteen litters of suckling piglets were fed a creep feed diet with (Antibiotic) or without (Control) antibiotics from postnatal days 7-23 (n = 8). The ileal and cecal digesta were obtained for microbial composition and microbial metabolites analysis. The results showed that the antibiotics significantly altered the bacterial community composition by decreasing (P < 0.05) the diversity and richness in the ileum. The antibiotics significantly reduced the abundance of Lactobacillus in both the ileum and cecum, increased the abundance of Streptococcus, unclassified Enterococcaceae, unclassified Fusobacteriales, and Corynebacterium in the ileum, and the abundance of unclassified Ruminococcaceae and unclassified Erysipelotrichaceae in the cecum. The antibiotics decreased (P < 0.05) ileal lactate concentration and cecal concentration of total short-chain fatty acids (SCFAs). But the antibiotics enhanced protein fermentation (P < 0.05) in the ileum and cecum, as ileal concentrations of putrescine and cadaverine, and cecal concentrations of isobutyrate, isovalerate, putrescine, cadaverine, spermine, and spermidine were significantly increased (P < 0.05). These results indicated that early antibiotics exposure significantly altered the microbial composition of suckling piglets toward a vulnerable and unhealthy gut environment. The findings provide a new insight on the antibiotics impact on neonates and may provide new framework for designing alternatives to the antibiotics toward a healthy practice for suckling piglets.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda