Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cancer Sci ; 115(8): 2515-2527, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38685894

RESUMEN

Multiple Endocrine Neoplasia 1 gene (MEN1), which is known to be a tumor suppressor gene in lung tissues, encodes a 610 amino acid protein menin. Previous research has proven that MEN1 deficiency promotes the malignant progression of lung cancer. However, the biological role of this gene in the immune microenvironment of lung cancer remains unclear. In this study, we found that programmed cell death-ligand 1 (PD-L1) is upregulated in lung-specific KrasG12D mutation-induced lung adenocarcinoma in mice, after Men1 deficiency. Simultaneously, CD8+ and CD3+ T cells are depleted, and their cytotoxic effects are suppressed. In vitro, PD-L1 is inhibited by the overexpression of menin. Mechanistically, we found that MEN1 inactivation promotes the deubiquitinating activity of COP9 signalosome subunit 5 (CSN5) and subsequently increases the level of PD-L1.


Asunto(s)
Antígeno B7-H1 , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas , Escape del Tumor , Animales , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ratones , Humanos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Escape del Tumor/genética , Complejo del Señalosoma COP9/genética , Complejo del Señalosoma COP9/metabolismo , Microambiente Tumoral/inmunología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Línea Celular Tumoral , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Ubiquitinación , Mutación
2.
BMC Cancer ; 24(1): 474, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622609

RESUMEN

BACKGROUND AND PURPOSE: In recent years, there has been extensive research on the role of exercise as an adjunctive therapy for cancer. However, the potential mechanisms underlying the anti-tumor therapy of exercise in lung cancer remain to be fully elucidated. As such, our study aims to confirm whether exercise-induced elevation of epinephrine can accelerate CD8+ T cell recruitment through modulation of chemokines and thus ultimately inhibit tumor progression. METHOD: C57BL/6 mice were subcutaneously inoculated with Lewis lung cancer cells (LLCs) to establish a subcutaneous tumor model. The tumor mice were randomly divided into different groups to performed a moderate-intensity exercise program on a treadmill for 5 consecutive days a week, 45 min a day. The blood samples and tumor tissues were collected after exercise for IHC, RT-qPCR, ELISA and Western blot. In addition, another group of mice received daily epinephrine treatment for two weeks (0.05 mg/mL, 200 µL i.p.) (EPI, n = 8) to replicate the effects of exercise on tumors in vivo. Lewis lung cancer cells were treated with different concentrations of epinephrine (0, 5, 10, 20 µM) to detect the effect of epinephrine on chemokine levels via ELISA and RT-qPCR. RESULTS: This study reveals that both pre- and post-cancer exercise effectively impede the tumor progression. Exercise led to an increase in EPI levels and the infiltration of CD8+ T cell into the lung tumor. Exercise-induced elevation of EPI is involved in the regulation of Ccl5 and Cxcl10 levels further leading to enhanced CD8+ T cell infiltration and ultimately inhibiting tumor progression. CONCLUSION: Exercise training enhance the anti-tumor immunity of lung cancer individuals. These findings will provide valuable insights for the future application of exercise therapy in clinical practice.


Asunto(s)
Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Animales , Ratones , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos , Quimiocinas , Carcinoma Pulmonar de Lewis/terapia , Carcinoma Pulmonar de Lewis/patología , Microambiente Tumoral , Línea Celular Tumoral
3.
Acta Pharmacol Sin ; 45(6): 1201-1213, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38491160

RESUMEN

The angiotensin II type 2 receptor (AT2R) is a well-established component of the renin-angiotensin system and is known to counteract classical activation of this system and protect against organ damage. Pharmacological activation of the AT2R has significant therapeutic benefits, including vasodilation, natriuresis, anti-inflammatory activity, and improved insulin sensitivity. However, the precise biological functions of the AT2R in maintaining homeostasis in liver tissue remain largely unexplored. In this study, we found that the AT2R facilitates liver repair and regeneration following acute injury by deactivating Hippo signaling and that interleukin-6 transcriptionally upregulates expression of the AT2R in hepatocytes through STAT3 acting as a transcription activator binding to promoter regions of the AT2R. Subsequently, elevated AT2R levels activate downstream signaling via heterotrimeric G protein Gα12/13-coupled signals to induce Yap activity, thereby contributing to repair and regeneration processes in the liver. Conversely, a deficiency in the AT2R attenuates regeneration of the liver while increasing susceptibility to acetaminophen-induced liver injury. Administration of an AT2R agonist significantly enhances the repair and regeneration capacity of injured liver tissue. Our findings suggest that the AT2R acts as an upstream regulator in the Hippo pathway and is a potential target in the treatment of liver damage.


Asunto(s)
Vía de Señalización Hippo , Interleucina-6 , Regeneración Hepática , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas , Receptor de Angiotensina Tipo 2 , Transducción de Señal , Animales , Masculino , Ratones , Acetaminofén , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Interleucina-6/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Regeneración Hepática/efectos de los fármacos , Regeneración Hepática/fisiología , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Proteínas Señalizadoras YAP/metabolismo
4.
Cancer Commun (Lond) ; 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340215

RESUMEN

BACKGROUND: Despite significant strides in lung cancer immunotherapy, the response rates for Kirsten rat sarcoma viral oncogene homolog (KRAS)-driven lung adenocarcinoma (LUAD) patients remain limited. Fibrinogen-like protein 1 (FGL1) is a newly identified immune checkpoint target, and the study of related resistance mechanisms is crucial for improving the treatment outcomes of LUAD patients. This study aimed to elucidate the potential mechanism by which FGL1 regulates the tumor microenvironment in KRAS-mutated cancer. METHODS: The expression levels of FGL1 and SET1 histone methyltransferase (SET1A) in lung cancer were assessed using public databases and clinical samples. Lentiviruses were constructed for transduction to overexpress or silence FGL1 in lung cancer cells and mouse models. The effects of FGL1 and Yes-associated protein (Yap) on the immunoreactivity of cytotoxic T cells in tumor tissues were evaluated using immunofluorescence staining and flow cytometry. Chromatin immunoprecipitation and dual luciferase reporter assays were used to study the SET1A-directed transcriptional program. RESULTS: Upregulation of FGL1 expression in KRAS-mutated cancer was inversely correlated with the infiltration of CD8+ T cells. Mechanistically, KRAS activated extracellular signal-regulated kinase 1/2 (ERK1/2), which subsequently phosphorylated SET1A and increased its stability and nuclear localization. SET1A-mediated methylation of Yap led to Yap sequestration in the nucleus, thereby promoting Yap-induced transcription of FGL1 and immune evasion in KRAS-driven LUAD. Notably, dual blockade of programmed cell death-1 (PD-1) and FGL1 further increased the therapeutic efficacy of anti-PD-1 immunotherapy in LUAD patients. CONCLUSION: FGL1 could be used as a diagnostic biomarker of KRAS-mutated lung cancer, and targeting the Yap-FGL1 axis could increase the efficacy of anti-PD-1 immunotherapy.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda