Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
2.
Plant J ; 92(3): 349-362, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28805257

RESUMEN

Systematic characterization of genetic and molecular mechanisms in the formation of hybrid sterility is of fundamental importance in understanding reproductive isolation and speciation. Using ultra-high-density genetic maps, 43 single-locus quantitative trait loci (QTLs) and 223 digenic interactions for embryo-sac, pollen, and spikelet fertility are depicted from three crosses between representative varieties of japonica and two varietal groups of indica, which provide an extensive archive for investigating the genetic basis of reproductive isolation in rice. Ten newly detected single-locus QTLs for inter- and intra-subspecific fertility are identified. Three loci for embryo-sac fertility are detected in both Nip × ZS97 and Nip × MH63 crosses, whereas QTLs for pollen fertility are not in common between the two crosses thus leading to fertility variation. Five loci responsible for fertility and segregation distortion are observed in the ZS97 × MH63 cross. The importance of two-locus interactions on fertility are quantified in the whole genome, which identify that three types of interaction contribute to fertility reduction in the hybrid. These results construct the genetic architecture with respect to various forms of reproductive barriers in rice, which have significant implications in utilization of inter-subspecific heterosis along with improvement in the fertility of indica-indica hybrids at single- and multi-locus level.


Asunto(s)
Vigor Híbrido/genética , Oryza/genética , Infertilidad Vegetal/genética , Sitios de Carácter Cuantitativo/genética , Aislamiento Reproductivo , Cruzamientos Genéticos , Sitios de Carácter Cuantitativo/inmunología
3.
Pharmaceutics ; 15(7)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37514196

RESUMEN

BACKGROUND: Hydroxy-α-Sanshool (HAS) possesses various pharmacological properties, such as analgesia and regulating gastrointestinal function. However, the low oral bioavailability of HAS has limited its oral delivery in clinical application. METHODS AND RESULTS: To enhance its oral bioavailability, a nanocomposite delivery system based on chitosan (CH, as the polycation) and sodium alginate (SA, as the polyanion) was prepared using a layer-by-layer coating technique. The morphology, thermal behavior and Fourier transform infrared spectrum (FTIR) showed that the obtained sodium alginate/chitosan-coated HAS-loaded liposomes (SA/CH-HAS-LIP) with core-shell structures have been successfully covered with polymers. When compared with HAS-loaded liposomes (HAS-LIP), SA/CH-HAS-LIP displayed obvious pH sensitivity and a sustained-release behavior in in vitro studies, which fitted well to Weibull model. In vivo, the half-life of HAS from SA/CH-HAS-LIP remarkably extended after oral administration compared to the free drug. Additionally, it allowed a 4.6-fold and 4.2-fold increase in oral bioavailability, respectively, compared with free HAS and HAS-LIP. CONCLUSIONS: SA/CH-HAS-LIP could be a promising release vehicle for the oral delivery of HAS to increase its oral bioavailability.

4.
Mol Plant ; 16(11): 1811-1831, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37794682

RESUMEN

Phosphorus is an essential macronutrient for plant development and metabolism, and plants have evolved ingenious mechanisms to overcome phosphate (Pi) starvation. However, the molecular mechanisms underlying the regulation of shoot and root architecture by low phosphorus conditions and the coordinated utilization of Pi and nitrogen remain largely unclear. Here, we show that Nodulation Signaling Pathway 1 (NSP1) and NSP2 regulate rice tiller number by promoting the biosynthesis of strigolactones (SLs), a class of phytohormones with fundamental effects on plant architecture and environmental responses. We found that NSP1 and NSP2 are induced by Oryza sativa PHOSPHATE STARVATION RESPONSE2 (OsPHR2) in response to low-Pi stress and form a complex to directly bind the promoters of SL biosynthesis genes, thus markedly increasing SL biosynthesis in rice. Interestingly, the NSP1/2-SL signaling module represses the expression of CROWN ROOTLESS 1 (CRL1), a newly identified early SL-responsive gene in roots, to restrain lateral root density under Pi deficiency. We also demonstrated that GR244DO treatment under normal conditions inhibits the expression of OsNRTs and OsAMTs to suppress nitrogen absorption but enhances the expression of OsPTs to promote Pi absorption, thus facilitating the balance between nitrogen and phosphorus uptake in rice. Importantly, we found that NSP1p:NSP1 and NSP2p:NSP2 transgenic plants show improved agronomic traits and grain yield under low- and medium-phosphorus conditions. Taken together, these results revealed a novel regulatory mechanism of SL biosynthesis and signaling in response to Pi starvation, providing genetic resources for improving plant architecture and nutrient-use efficiency in low-Pi environments.


Asunto(s)
Oryza , Oryza/metabolismo , Lactonas/metabolismo , Fósforo/metabolismo , Fosfatos/metabolismo , Transducción de Señal , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Drug Deliv ; 29(1): 743-753, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35244508

RESUMEN

Hydroxy-α-sanshool (HAS), extracted from Zanthoxylum piperitum, is commonly used in oral surgery to relief pain. However, the application of HAS is limited in clinical practice due to its poor stability. This study focuses on the design of a novel nano-formulation delivery system for HAS to improve its stability and local anesthetic effect. Hydroxy-α-sanshool loaded nanostructured lipid carriers (HAS-NLCs) were prepared by melting emulsification and ultra-sonication using monostearate (GMS) and oleic acid (OA) as lipid carriers, and poloxamer-188 (F68) as a stabilizer. Besides, the formulation was optimized by response surface methodology (RSM). Then, the best formulation was characterized for particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (EE%), drug loading (DL%), differential scanning calorimetry (DSC), and morphology (transmission electron microscopy, TEM). The obtained HAS-NLCs were homogeneous, near spherical particles with high DL% capacity. The stability of HAS-NLCs against oxygen, light, and heat was greatly improved over 10.79 times, 3.25 times, and 2.09 times, respectively, compared to free HAS. In addition, HAS-NLCs could exhibit sustained release in 24 h following a double-phase kinetics model in vitro release study. Finally, HAS-NLCs had excellent anesthetic effect at low dose in formalin test compared with free HAS and lidocaine, which indicated HAS-NLCs were a potential local anesthesia formulation in practice.


Asunto(s)
Portadores de Fármacos , Nanoestructuras , Amidas , Anestesia Local , Anestésicos Locales , Portadores de Fármacos/química , Nanoestructuras/química , Ácido Oléico , Tamaño de la Partícula
6.
Front Microbiol ; 13: 980082, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439829

RESUMEN

Objectives: The intestinal microbiota is essential in absorbing nutrients and defending against pathogens and is associated with various diseases, including obesity, type 2 diabetes, and hypertension. As an alternative medicine, Traditional Chinese Medicine (TCM) has long been used in disease treatment and healthcare, partly because it may mediate gut microbiota. However, the specific effects of TCM on the abundance and interactions of microbiota remain unknown. Moreover, using TCM ingredients and data detailing changes in the abundance of gut microorganisms, we developed bioinformatic methods that decipher the impact of TCM on microorganism interactions. Methods: The dynamics of gut microorganisms affected by TCM treatments is explored using a mouse model, which provided the abundance of 70 microorganisms over time. The Granger causality analysis was used to measure microorganism interactions. Novel "serial connection" and "diverging connection" models were used to identify molecular mechanisms underlying the impact of TCM on gut microorganism interactions, based on microorganism proteins, TCM chemical ingredients, and KEGG reaction equations. Results: Codonopsis pilosula (Dangshen), Cassia twig (Gui Zhi), Radices saussureae (Mu Xiang), and Sijunzi Decoction did not cause an increase in the abundance of harmful microorganisms. Most TCMs decreased the abundance of Bifidobacterium pseudolongum, suggesting a Bifidobacterium pseudolongum supplement should be used during TCM treatment. The Granger causality analysis indicated that TCM treatment changes more than half the interactions between the 70 microorganisms, and "serial connection" and "diverging connection" models suggested that changes in interactions may be related to the reaction number connecting species proteins and TCM ingredients. From a species diversity perspective, a TCM decoction is better than a single herb for healthcare. The Sijunzi Decoction only significantly increased the abundance of Bifidobacterium pseudolongum and did not cause a decrease in the abundance of other species but was found to improve the alpha diversity with the lowest replacement rate. Conclusions: Because most of the nine TCMs are medicinal and edible plants, we expect the methods and results presented can be used to optimize and integrate microbiota and TCMs into healthcare processes. Moreover, as a control study, these results can be combined with future disease mouse models to link variations in species abundance with particular diseases.

7.
Cell Discov ; 8(1): 71, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882853

RESUMEN

Chilling is a major abiotic stress harming rice development and productivity. The C-REPEAT BINDING FACTOR (CBF)-dependent transcriptional regulatory pathway plays a central role in cold stress and acclimation in Arabidopsis. In rice, several genes have been reported in conferring chilling tolerance, however, the chilling signaling in rice remains largely unknown. Here, we report the chilling-induced OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 6 (OsSAPK6)-IDEAL PLANT ARCHITECTURE 1 (IPA1)-OsCBF3 signal pathway in rice. Under chilling stress, OsSAPK6 could phosphorylate IPA1 and increase its stability. In turn, IPA1 could directly bind to the GTAC motif on the OsCBF3 promoter to elevate its expression. Genetic evidence showed that OsSAPK6, IPA1 and OsCBF3 were all positive regulators of rice chilling tolerance. The function of OsSAPK6 in chilling tolerance depended on IPA1, and overexpression of OsCBF3 could rescue the chilling-sensitive phenotype of ipa1 loss-of-function mutant. Moreover, the natural gain-of-function allele ipa1-2D could simultaneously enhance seedling chilling tolerance and increase grain yield. Taken together, our results revealed a chilling-induced OsSAPK6-IPA1-OsCBF signal cascade in rice, which shed new lights on chilling stress-tolerant rice breeding.

8.
Mol Plant ; 14(6): 997-1011, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33741527

RESUMEN

Grain number per panicle (GNP) is an important agronomic trait that contributes to rice grain yield. Despite its importance in rice breeding, the molecular mechanism underlying GNP regulation remains largely unknown. In this study, we identified a previously unrecognized regulatory gene that controls GNP in rice, Oryza sativa REPRODUCTIVE MERISTEM 20 (OsREM20), which encodes a B3 domain transcription factor. Through genetic analysis and transgenic validation we found that genetic variation in the CArG box-containing inverted repeat (IR) sequence of the OsREM20 promoter alters its expression level and contributes to GNP variation among rice varieties. Furthermore, we revealed that the IR sequence regulates OsREM20 expression by affecting the direct binding of OsMADS34 to the CArG box within the IR sequence. Interestingly, the divergent pOsREM20IR and pOsREM20ΔIR alleles were found to originate from different Oryza rufipogon accessions, and were independently inherited into the japonica and indica subspecies, respectively, during domestication. Importantly, we demonstrated that IR sequence variations in the OsREM20 promoter can be utilized for germplasm improvement through either genome editing or traditional breeding. Taken together, our study characterizes novel genetic variations responsible for GNP diversity in rice, reveals the underlying molecular mechanism in the regulation of agronomically important gene expression, and provides a promising strategy for improving rice production by manipulating the cis-regulatory element-containing IR sequence.


Asunto(s)
Grano Comestible/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Alelos , Domesticación , Grano Comestible/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Secuencias Invertidas Repetidas , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Regiones Promotoras Genéticas
10.
Biomed Res Int ; 2017: 9139504, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28553651

RESUMEN

Noncoding RNAs (ncRNAs) play important roles in various cellular activities and diseases. In this paper, we presented a comprehensive review on computational methods for ncRNA prediction, which are generally grouped into four categories: (1) homology-based methods, that is, comparative methods involving evolutionarily conserved RNA sequences and structures, (2) de novo methods using RNA sequence and structure features, (3) transcriptional sequencing and assembling based methods, that is, methods designed for single and pair-ended reads generated from next-generation RNA sequencing, and (4) RNA family specific methods, for example, methods specific for microRNAs and long noncoding RNAs. In the end, we summarized the advantages and limitations of these methods and pointed out a few possible future directions for ncRNA prediction. In conclusion, many computational methods have been demonstrated to be effective in predicting ncRNAs for further experimental validation. They are critical in reducing the huge number of potential ncRNAs and pointing the community to high confidence candidates. In the future, high efficient mapping technology and more intrinsic sequence features (e.g., motif and k-mer frequencies) and structure features (e.g., minimum free energy, conserved stem-loop, or graph structures) are suggested to be combined with the next- and third-generation sequencing platforms to improve ncRNA prediction.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/genética , Conformación de Ácido Nucleico , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/tendencias , MicroARNs/química , ARN Largo no Codificante/química , Análisis de Secuencia de ARN/tendencias
11.
Oncotarget ; 8(49): 85136-85149, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29156709

RESUMEN

Obesity is a primary risk factor for many diseases such as certain cancers. In this study, we have developed three algorithms including a random-walk based method OBNet, a shortest-path based method OBsp and a direct-overlap method OBoverlap, to reveal obesity-disease connections at protein-interaction subnetworks corresponding to thousands of biological functions and pathways. Through literature mining, we also curated an obesity-associated disease list, by which we compared the methods. As a result, OBNet outperforms other two methods. OBNet can predict whether a disease is obesity-related based on its associated genes. Meanwhile, OBNet identifies extensive connections between obesity genes and genes associated with a few diseases at various functional modules and pathways. Using breast cancer and Type 2 diabetes as two examples, OBNet identifies meaningful genes that may play key roles in connecting obesity and the two diseases. For example, TGFB1 and VEGFA are inferred to be the top two key genes mediating obesity-breast cancer connection in modules associated with brain development. Finally, the top modules identified by OBNet in breast cancer significantly overlap with modules identified from TCGA breast cancer gene expression study, revealing the power of OBNet in identifying biological processes involved in the disease.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda