Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Biochemistry ; 63(11): 1395-1411, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38747545

RESUMEN

Nitric oxide synthase (NOS) in mammals is a family of multidomain proteins in which interdomain electron transfer (IET) is controlled by domain-domain interactions. Calmodulin (CaM) binds to the canonical CaM-binding site in the linker region between the FMN and heme domains of NOS and allows tethered FMN domain motions, enabling an intersubunit FMN-heme IET in the output state for NO production. Our previous cross-linking mass spectrometric (XL MS) results demonstrated site-specific protein dynamics in the CaM-responsive regions of rat neuronal NOS (nNOS) reductase construct, a monomeric protein [Jiang et al., Biochemistry, 2023, 62, 2232-2237]. In this work, we have extended our combined approach of XL MS structural mapping and AlphaFold structural prediction to examine the homodimeric nNOS oxygenase/FMN (oxyFMN) construct, an established model of the NOS output state. We employed parallel reaction monitoring (PRM) based quantitative XL MS (qXL MS) to assess the CaM-induced changes in interdomain dynamics and interactions. Intersubunit cross-links were identified by mapping the cross-links onto top AlphaFold structural models, which was complemented by comparing their relative abundances in the cross-linked dimeric and monomeric bands. Furthermore, contrasting the CaM-free and CaM-bound nNOS samples shows that CaM enables the formation of the intersubunit FMN-heme docking complex and that CaM binding induces extensive, allosteric conformational changes across the NOS regions. Moreover, the observed cross-links sites specifically respond to changes in ionic strength. This indicates that interdomain salt bridges are responsible for stabilizing and orienting the output state for efficient FMN-heme IET. Taken together, our targeted qXL MS results have revealed that CaM and ionic strength modulate specific dynamic changes in the CaM/FMN/heme complexes, particularly in the context of intersubunit interdomain FMN-heme interactions.


Asunto(s)
Mononucleótido de Flavina , Hemo , Espectrometría de Masas , Óxido Nítrico Sintasa de Tipo I , Animales , Ratas , Sitios de Unión , Calmodulina/metabolismo , Calmodulina/química , Reactivos de Enlaces Cruzados/química , Mononucleótido de Flavina/metabolismo , Mononucleótido de Flavina/química , Hemo/metabolismo , Hemo/química , Modelos Moleculares , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo I/química , Unión Proteica , Dominios Proteicos
2.
J Biol Inorg Chem ; 29(6): 611-623, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39136772

RESUMEN

Nitric oxide synthases (NOSs), a family of flavo-hemoproteins with relatively rigid domains linked by flexible regions, require optimal FMN domain docking to the heme domain for efficient interdomain electron transfer (IET). To probe the FMN-heme interdomain docking, the magnetic dipole interactions between the FMN semiquinone radical (FMNH•) and the low-spin ferric heme centers in oxygenase/FMN (oxyFMN) constructs of neuronal and inducible NOS (nNOS and iNOS, respectively) were measured using the relaxation-induced dipolar modulation enhancement (RIDME) technique. The FMNH• RIDME data were analyzed using the mesoscale Monte Carlo calculations of conformational distributions of NOS, which were improved to account for the native degrees of freedom of the amino acid residues constituting the flexible interdomain tethers. This combined computational and experimental analysis allowed for the estimation of the stabilization energies and populations of the docking complexes of calmodulin (CaM) and the FMN domain with the heme domain. Moreover, combining the five-pulse and scaled four-pulse RIDME data into a single trace has significantly reduced the uncertainty in the estimated docking probabilities. The obtained FMN-heme domain docking energies for nNOS and iNOS were similar (-3.8 kcal/mol), in agreement with the high degree of conservation of the FMN-heme domain docking interface between the NOS isoforms. In spite of the similar energetics, the FMN-heme domain docking probabilities in nNOS and iNOS oxyFMN were noticeably different (~ 0.19 and 0.23, respectively), likely due to differences in the lengths of the FMN-heme interdomain tethers and the docking interface topographies. The analysis based on the IET theory and RIDME experiments indicates that the variations in conformational dynamics may account for half of the difference in the FMN-heme IET rates between the two NOS isoforms.


Asunto(s)
Mononucleótido de Flavina , Hemo , Óxido Nítrico Sintasa de Tipo II , Animales , Ratas , Espectroscopía de Resonancia por Spin del Electrón , Mononucleótido de Flavina/metabolismo , Mononucleótido de Flavina/química , Hemo/química , Hemo/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Óxido Nítrico Sintasa de Tipo II/química , Óxido Nítrico Sintasa de Tipo II/metabolismo , Conformación Proteica , Dominios Proteicos , Humanos
3.
J Biol Inorg Chem ; 29(2): 243-250, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38580821

RESUMEN

Calmodulin (CaM) binds to a linker between the oxygenase and reductase domains of nitric oxide synthase (NOS) to regulate the functional conformational dynamics. Specific residues on the interdomain interface guide the domain-domain docking to facilitate the electron transfer in NOS. Notably, the docking interface between CaM and the heme-containing oxygenase domain of NOS is isoform specific, which is only beginning to be investigated. Toward advancing understanding of the distinct CaM-NOS docking interactions by infrared spectroscopy, we introduced a cyano-group as frequency-resolved vibrational probe into CaM individually and when associated with full-length and a bi-domain oxygenase/FMN construct of the inducible NOS isoform (iNOS). Site-specific, selective labeling with p-cyano-L-phenylalanine (CNF) by amber suppression of CaM bound to the iNOS has been accomplished by protein coexpression due to the instability of recombinant iNOS protein alone. We introduced CNF at residue 108, which is at the putative CaM-heme (NOS) docking interface. CNF was also introduced at residue 29, which is distant from the docking interface. FT IR data show that the 108 site is sensitive to CaM-NOS complex formation, while insensitivity to its association with the iNOS protein or peptide was observed for the 29 site. Moreover, narrowing of the IR bands at residue 108 suggests the C≡N probe experiences a more limited distribution of environments, indicating side chain restriction apparent for the complex with iNOS. This initial work sets the stage for residue-specific characterizations of structural dynamics of the docked states of NOS proteins.


Asunto(s)
Calmodulina , Espectrofotometría Infrarroja , Calmodulina/química , Calmodulina/metabolismo , Óxido Nítrico Sintasa de Tipo II/química , Óxido Nítrico Sintasa de Tipo II/metabolismo , Unión Proteica , Simulación del Acoplamiento Molecular
4.
Int Microbiol ; 27(1): 203-212, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37261581

RESUMEN

Selenium (Se) and tellurium (Te) contaminations in soils and water bodies have been widely reported in recent years. Se(IV) and Te(IV) were regarded as their most dangerous forms. Microbial treatments of Se(IV)- and Te(IV)-containing wastes are promising approaches because of their environmentally friendly and sustainable advantages. However, the salt-tolerant microbial resources that can be used for selenium/tellurium pollution control are still limited since industrial wastewaters usually contain a large number of salts. In this study, a marine Shewanella sp. FDA-1 (FDA-1) was reported for efficient Se(IV) and Te(IV) reduction under saline conditions. Process and product analyses were performed to investigate the bioreduction processes of Se(IV) and Te(IV). The results showed that FDA-1 can effectively reduce Se(IV) and Te(IV) to Se0 and Te0 Se(IV)/Te(IV) to Se0/Te0 in 72 h, which were further confirmed by XRD and XPS analyses. In addition, enzymatic and RT‒qPCR assays showed that flavin-related proteins, reductases, dehydrogenases, etc., could be involved in the bioreduction of Se(IV)/Te(IV). Overall, our results demonstrate the ability of FDA-1 to reduce high concentrations of Se(IV)/or Te(IV) to Se0/or Te0 under saline conditions and thus provide efficient microbial candidate for controlling Se and Te pollution.


Asunto(s)
Ácido Selenioso , Selenio , Ácido Selenioso/metabolismo , Selenio/metabolismo , Telurio/metabolismo , Metales
5.
Fish Shellfish Immunol ; 152: 109764, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002558

RESUMEN

NF-κB (Nuclear factor-kappa B) family proteins are versatile transcription factors that play crucial regulatory roles in cell development, growth, apoptosis, inflammation, and immune response. However, there is limited research on the function of these key genes in echinoderms. In this study, an NF-κB family gene (SiRel) was identified in sea urchin Strongylocentrotus intermedius. The gene has an open reading frame length of 1809 bp and encodes for 602 amino acids. Domain prediction results revealed that the N-terminal of SiRel protein encodes a conserved Rel homology domain (RHD), including the RHD-DNA binding domain and the RHD-dimerization domain. Multiple sequence comparison results showed that the protein sequences of these two domains were conserved. Phylogenetic analysis indicated that SiRel clustered with Strongylocentrotus purpuratus p65 protein and Rel protein of other echinoderms. Results from quantitative real-time PCR demonstrated detectable SiRel mRNA expression in all tested sea urchin tissues, with the highest expression level found in the gills. And SiRel mRNA expression levels were significantly induced after LPS (Lipopolysaccharide) and poly(I:C) (Polyinosinic:polycytidylic acid) stimulation. In addition, SiRel protein expression can be found in cytoplasm and nucleus of HEK293T cells. Co-immunoprecipitation results showed that SiRel could interact with sea urchin IκB (Inhibitor of NF-κB) protein. Western blotting and dual-luciferase reporter gene assay results indicated that overexpression of SiRel in HEK293T cells could impact the phosphorylation levels of JNK (c-Jun N-terminal kinase) and Erk1/2 (Extracellular signal-regulated kinases1/2) and activate interleukin-6 (IL-6), activating protein 1 (AP-1), interferon (IFN)α/ß/γ, and signal transducer and activator of transcription 3 (STAT3) reporter genes in HEK293T cells. In conclusion, this study reveals that SiRel plays an important role in the innate immune response of sea urchins and enriches our understanding of comparative immunology theory.


Asunto(s)
Secuencia de Aminoácidos , Regulación de la Expresión Génica , Inmunidad Innata , Lipopolisacáridos , Filogenia , Poli I-C , Alineación de Secuencia , Strongylocentrotus , Animales , Inmunidad Innata/genética , Poli I-C/farmacología , Lipopolisacáridos/farmacología , Strongylocentrotus/genética , Strongylocentrotus/inmunología , Alineación de Secuencia/veterinaria , Regulación de la Expresión Génica/inmunología , Clonación Molecular , Perfilación de la Expresión Génica/veterinaria , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , FN-kappa B/inmunología , Secuencia de Bases , Proteínas Proto-Oncogénicas c-rel/genética , Proteínas Proto-Oncogénicas c-rel/metabolismo , Células HEK293
6.
Biochemistry ; 62(15): 2232-2237, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37459398

RESUMEN

Nitric oxide synthase (NOS) is responsible for the biosynthesis of nitric oxide (NO), an important signaling molecule controlling diverse physiological processes such as neurotransmission and vasodilation. Neuronal NOS (nNOS) is a calmodulin (CaM)-controlled enzyme. In the absence of CaM, several intrinsic control elements, along with NADP+ binding, suppress electron transfer across the NOS domains. CaM binding relieves the inhibitory factors to promote the electron transport required for NO production. The regulatory dynamics of nNOS control elements are critical to governing NO signaling, yet mechanistic questions remain, because the intrinsic dynamics of NOS thwart traditional structural biology approaches. Here, we have employed cross-linking mass spectrometry (XL MS) to probe regulatory dynamics in nNOS, focusing on the CaM-responsive control elements. Quantitative XL MS revealed conformational changes differentiating the nNOS reductase (nNOSred) alone, nNOSred with NADP+, nNOS-CaM, and nNOS-CaM with NADP+. We observed distinct effects of CaM vs NADP+ on cross-linking patterns in nNOSred. CaM induces striking global changes, while the impact of NADP+ is primarily localized to the NADPH-binding subdomain. Moreover, CaM increases the abundance of intra-nNOS cross-links that are related to the formation of the inter-CaM-nNOS cross-links. Taken together, these XL MS results demonstrate that CaM and NADP+ site-specifically alter the nNOS conformational landscape.

7.
Mol Biol Evol ; 39(6)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35642306

RESUMEN

As the best adapted high altitude population, Tibetans feature a relatively high offspring survival rate. Genome-wide studies have identified hundreds of candidate SNPs related to high altitude adaptation of Tibetans, although most of them have unknown functional relevance. To explore the mechanisms behind successful reproduction at high altitudes, we compared the placental transcriptomes of Tibetans, sea level Hans (SLHan), and Han immigrants (ImHan). Among the three populations, placentas from ImHan showed a hyperactive gene expression pattern. Their increased activation demonstrates a hypoxic stress response similar to sea level individuals experiencing hypoxic conditions. Unlike ImHan, Tibetan placentas were characterized by the significant up-regulation of placenta-specific genes, and the activation of autophagy and the tricarboxylic acid (TCA) cycle. Certain conserved hypoxia response functions, including the antioxidant system and angiogenesis, were activated in both ImHan and Tibetans, but mediated by different genes. The coherence of specific transcriptome features linked to possible genetic contribution was observed in Tibetans. Furthermore, we identified a novel Tibetan-specific EPAS1 isoform with a partial deletion at exon six, which may be involved in the adaption to hypoxia through the EPAS1-centred gene network in the placenta. Overall, our results show that the placenta grants successful pregnancies in Tibetans by strengthening the natural functions of the placenta itself. On the other hand, the placenta of ImHan was in an inhabiting time-dependent acclimatization process representing a common hypoxic stress response pattern.


Asunto(s)
Altitud , Transcriptoma , Aclimatación/genética , Femenino , Hemoglobinas/genética , Humanos , Hipoxia/metabolismo , Placenta/metabolismo , Embarazo , Reproducción , Tibet
8.
Funct Integr Genomics ; 23(2): 198, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37273114

RESUMEN

Programmed cell death (PCD) resistance is a key driver of cancer occurrence and development. The prognostic relevance of PCD-related genes in hepatocellular carcinoma (HCC) has attracted considerable attention in recent years. However, there is still a lack of efforts to compare the methylation status of different types of PCD genes in HCC and their roles in its surveillance. The methylation status of genes related to pyroptosis, apoptosis, autophagy, necroptosis, ferroptosis, and cuproptosis was analyzed in tumor and non-tumor tissues from TCGA. Whole-genome bisulfite sequencing (WGBS) data of paired tumor tissue and buffy coat samples were used to filter the potential interference of blood leukocytes in cell-free DNA (cfDNA). The WGBS data of healthy individuals' and early-stage HCC patients' cfDNA were analyzed to evaluate the distinguishing ability. The average gene body methylation (gbDNAme) of pyroptosis-related genes (PRGs) was significantly altered in HCC tissues relative to normal tissues, and their distinguishing ability was higher compared to the other types of PCD-related genes. The gbDNAme of NLRP7, NLRP2, and NLRP3 was reflective of the hypomethylation in HCC tissues, and methylation levels of NLRP3 correlated positively with its expression level (r=0.51). The candidate hypomethylated PRGs could discriminate between early HCC patients and healthy controls in cfDNA analysis with high accuracy (area under the receiver operation curve, AUC=0.94). Furthermore, the hypomethylation of PRGs was associated with poor prognosis of HCC. Gene body hypomethylation of PRGs is a promising biomarker for early HCC detection, monitoring of tumor recurrence, and prognosis prediction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Ácidos Nucleicos Libres de Células , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/genética
9.
Microb Ecol ; 85(2): 465-477, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35113183

RESUMEN

Reef sediments, the home for microbes with high abundances, provide an important source of carbonates and nutrients for the growth and maintenance of coral reefs. However, there is a lack of systematic research on the composition of microbial community in sediments of different geographic sites and their potential effect on nutrient recycling and health of the coral reef ecosystem. In combination of biogeochemical measurements with gene- and genome-centric metagenomics, we assessed microbial community compositions and functional diversity, as well as profiles of antibiotic resistance genes in surface sediments of 16 coral reef sites at different depths from the Xisha islands in the South China Sea. Reef sediment microbiomes are diverse and novel at lower taxonomic ranks, dominated by Proteobacteria and Planctomycetota. Most reef sediment bacteria potentially participate in biogeochemical cycling via oxidizing various organic and inorganic compounds as energy sources. High abundances of Proteobacteria (mostly Rhizobiales and Woeseiales) are metabolically flexible and contain rhodopsin genes. Various classes of antibiotic resistance genes, hosted by diverse bacterial lineages, were identified to confer resistance to multidrug, aminoglycoside, and other antibiotics. Overall, our findings expanded the understanding of reef sediment microbial ecology and provided insights for their link to the coral reef ecosystem health.


Asunto(s)
Antozoos , Microbiota , Animales , Arrecifes de Coral , Ecosistema , Arena , Metagenómica , Bacterias/genética , Proteobacteria , Antozoos/microbiología
10.
Sensors (Basel) ; 23(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37960417

RESUMEN

Infrared sensors capture infrared rays radiated by objects to form thermal images. They have a steady ability to penetrate smoke and fog, and are widely used in security monitoring, military, etc. However, civilian infrared detectors with lower resolution cannot compare with megapixel RGB camera sensors. In this paper, we propose a dynamic attention mechanism-based thermal image super-resolution network for infrared sensors. Specifically, the dynamic attention modules adaptively reweight the outputs of the attention and non-attention branches according to features at different depths of the network. The attention branch, which consists of channel- and pixel-wise attention blocks, is responsible for extracting the most informative features, while the non-attention branch is adopted as a supplement to extract the remaining ignored features. The dynamic weights block operates with 1D convolution instead of the full multi-layer perceptron on the global average pooled features, reducing parameters and enhancing information interaction between channels, and the same structure is adopted in the channel attention block. Qualitative and quantitative results on three testing datasets demonstrate that the proposed network can superior restore high-frequency details while improving the resolution of thermal images. And the lightweight structure of the proposed network with lower computing cost can be practically deployed on edge devices, effectively improving the imaging perception quality of infrared sensors.

11.
Environ Microbiol ; 24(4): 1775-1789, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34996132

RESUMEN

In this study, we investigated microbial communities (bacteria and protist) in two coastal areas near the estuaries of the Liaohe (LH) River and Yalujiang (YLJ) River in the Northwestern Pacific Ocean. Due to the existence of Liaodong Peninsula and different levels of urbanization, geographical segregation and significant environmental heterogeneity were observed between these two areas. There were significantly different regional species pools and biogeographic patterns for both bacterial and protistan communities between LH and YLJ coastal areas. Species turnover was the main mechanism driving ß-diversity patterns of both bacterial and protistan communities in each area. In addition, the contributed ratio of nestedness to the ß-diversity patterns was significantly higher for protists compared to bacteria. Variation in regional species pools was found to be the dominant driver of differences of bacterial and protistan communities between the LH and YLJ coastal areas. For a single-studied area, local community assembly mechanisms, including heterogeneous selection and dispersal limitation, were found to shape the bacterial and protistan communities through calculation of the ß-deviation index. Among them, the relative importance of heterogeneous selection and dispersal limitation on the community assembly varied according to microorganism type and habitat.


Asunto(s)
Estuarios , Microbiota , Bacterias/genética , Biodiversidad , Eucariontes/genética , Ríos
12.
Toxicol Appl Pharmacol ; 452: 116193, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35961411

RESUMEN

Arsenic exposure produces significant hematotoxicity in vitro and in vivo. Our previous work shows that arsenic (in the form of arsenite, AsIII) interacts with the zinc finger domains of GATA-1, inhibiting the function of this critical transcription factor, and resulting in the suppression of erythropoiesis. In addition to GATA-1, GATA-2 also plays a key role in the regulation of hematopoiesis. GATA-1 and GATA-2 have similar zinc finger domains (C4-type) that are structurally favorable for AsIII interactions. Taking this into consideration, we hypothesized that early stages of hematopoietic differentiation that are dependent on the function of GATA-2 may also be disrupted by AsIII exposure. We found that in vitro AsIII exposures disrupt the erythromegakaryocytic lineage commitment and differentiation of erythropoietin-stimulated primary mouse bone marrow hematopoietic progenitor cells (HPCs), producing an aberrant accumulation of cells in early stages of hematopoiesis and subsequent reduction of committed erythro-megakaryocyte progenitor cells. Arsenic significantly accumulated in the GATA-2 protein, causing the loss of zinc, and disruption of GATA-2 function, as measured by chromatin immunoprecipitation and the expression of GATA-2 responsive genes. Our results show that the attenuation of GATA-2 function is an important mechanism contributing to the aberrant lineage commitment and differentiation of early HPCs. Collectively, findings from the present study suggest that the AsIII-induced disruption of erythro-megakaryopoiesis may contribute to the onset and/or exacerbation of hematological disorders, such as anemia.


Asunto(s)
Arsénico , Factor de Transcripción GATA2/metabolismo , Animales , Arsénico/metabolismo , Arsénico/toxicidad , Diferenciación Celular/fisiología , ADN/metabolismo , Eritropoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Ratones , Factores de Transcripción/genética
13.
J Environ Manage ; 324: 116365, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36202038

RESUMEN

Equilibrium in microbial dynamics and nitrogen transformation in the sediment is critical for maintaining healthy mariculture environment. However, our understanding about the impact of heavy metals on the bacterial community and nitrogen transformation functional genes in different mariculture patterns is still limited. Here, we analyzed 30 sediment samples in the vertical distribution from three different mariculture patterns mainly include open mariculture zone (K), closed mariculture pond (F) and pristine marine area (Q). Illumina MiSeq Sequencing was applied to investigate the bacterial community and structure in the sediment. Quantitative polymerase chain reaction (qPCR) was used to determine the effect of heavy metals on nitrogen transformation functional genes. Results showed that bacterial community and structure varied greatly in different mariculture patterns. Chloroflexi, Proteobacteria and Desulfobacterota were predominant phyla in the coastal mariculture area. High concentrations of heavy metals mainly enriched in the up layer (5-40 cm) of the sediment in the mariculture zone. The abundance of functional genes in the closed mariculture pond was much higher than the open mariculture zone and pristine marine area. And the high abundance of nitrification and denitrification functional genes mainly accumulated at the depth from 5 cm to 40 cm. Heavy metals content such as Fe, Cr, Mn, Ni, As, Cd, Pb and nutrient content NH4+-N, NO3--N and NO2--N were highly associated with bacterial community and nitrogen transformation functional genes. This study comprehensively elaborated the effect of heavy metals on the bacterial community and nitrogen transformation functional genes in different coastal mariculture patterns, indicating the possible role of closed mariculture pond in reducing nitrogen transformation efficiency, which will provide useful information for preventing pollution risk in the mariculture area.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Nitrógeno/análisis , Sedimentos Geológicos/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Acuicultura , Metales Pesados/análisis , Bacterias/genética , China
14.
BMC Microbiol ; 21(1): 80, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750295

RESUMEN

BACKGROUND: A wide variety of bacterial adaptative responses to environmental conditions are mediated by signal transduction pathways. Two-component signal transduction systems are one of the predominant means used by bacteria to sense the signals of the host plant and adjust their interaction behaviour. A total of seven open reading frames have been identified as putative two-component response regulators in the gram-negative nitrogen-fixing bacteria Azorhizobium caulinodans ORS571. However, the biological functions of these response regulators in the symbiotic interactions between A. caulinodans ORS571 and the host plant Sesbania rostrata have not been elucidated to date. RESULTS: In this study, we identified and investigated a two-component response regulator, AcfR, with a phosphorylatable N-terminal REC (receiver) domain and a C-terminal HTH (helix-turn-helix) LuxR DNA-binding domain in A. caulinodans ORS571. Phylogenetic analysis showed that AcfR possessed close evolutionary relationships with NarL/FixJ family regulators. In addition, six histidine kinases containing HATPase_c and HisKA domains were predicted to interact with AcfR. Furthermore, the biological function of AcfR in free-living and symbiotic conditions was elucidated by comparing the wild-type strain and the ΔacfR mutant strain. In the free-living state, the cell motility behaviour and exopolysaccharide production of the ΔacfR mutant were significantly reduced compared to those of the wild-type strain. In the symbiotic state, the ΔacfR mutant showed a competitive nodule defect on the stems and roots of the host plant, suggesting that AcfR can provide A. caulinodans with an effective competitive ability for symbiotic nodulation. CONCLUSIONS: Our results showed that AcfR, as a response regulator, regulates numerous phenotypes of A. caulinodans under the free-living conditions and in symbiosis with the host plant. The results of this study help to elucidate the involvement of a REC + HTH_LuxR two-component response regulator in the Rhizobium-host plant interaction.


Asunto(s)
Azorhizobium caulinodans/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Interacciones Microbiota-Huesped/genética , Plantas/microbiología , Simbiosis/genética , Azorhizobium caulinodans/clasificación , Mutación , Sistemas de Lectura Abierta/genética
15.
Toxicol Appl Pharmacol ; 411: 115362, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33279514

RESUMEN

Arsenic exposure is well established to impair the function of zinc finger proteins, including PARP-1. Previous studies from our lab show that early developing T cells in the thymus are very sensitive to arsenite (As+3)-induced genotoxicity mediated through PARP-1 inhibition. Additionally, it has been shown that uranium (in the form of uranyl acetate, UA) also suppresses PARP-1 activity in HEK cells. However, very little is known about whether the As+3 metabolite, monomethylarsonous acid (MMA+3), also inhibits PARP-1 activity and if this is modified by combined exposures with other metals, such as uranium. In the present study, we found that MMA+3 significantly suppressed PARP-1 function, whereas UA at high concentrations significantly increased PARP-1 activity. To evaluate whether the effects on PARP-1 activity were mediated through oxidative stress, we measured the induction of hemoxygenase-1 (Hmox-1) expression by qPCR. MMA+3, but not UA, significantly induced oxidative stress; however, the inhibition of PARP-1 produced by MMA+3 was not reversed by the addition of the antioxidant, Tempol. Further evaluation revealed minimal interactive effects of MMA+3 and UA on PARP-1 function. Collectively, our results show that contrary to As+3, the suppressive effects of MMA+3 on PARP-1 were not substantially driven by oxidative stress. in mouse thymus cells. Results for this study provide important insights into the effects of MMA+3 and uranium exposures on PARP-1 function, which is essential for future studies focused on understanding the effects of complex environmentally relevant metal mixtures.


Asunto(s)
Compuestos Organometálicos/toxicidad , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/toxicidad , Timo/efectos de los fármacos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Timo/enzimología
16.
Chem Soc Rev ; 49(17): 6198-6223, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32756629

RESUMEN

As the largest renewable carbon resource, lignocellulosic biomass has great potential to replace fossil resources for the production of high-value chemicals, in particular organic oxygenates. Catalytic transformations of lignocellulosic biomass using solar energy have attracted much recent attention, because of unique reactive species and reaction patterns induced by photo-excited charge carriers or photo-generated reactive species as well as the mild reaction conditions, which may enable the precise cleavage of target chemical bonds or selective functionalisation of specific functional groups with other functional groups kept intact. Here, we present a critical review on recent advances in the photocatalytic transformation of lignocellulosic biomass with an emphasis on photocatalytic cleavage of C-O and C-C bonds in major components of lignocellulosic biomass, including polysaccharides and lignin, and the photocatalytic valorisation of some key platform molecules. The key issues that control the reaction paths and the reaction mechanism will be discussed to offer insights to guide the design of active and selective photocatalytic systems for biomass valorisation under mild conditions. The challenges and future opportunities in photocatalytic transformations of lignocellulosic biomass are also analysed.


Asunto(s)
Biomasa , Lignina/química , Procesos Fotoquímicos , Biocombustibles
17.
J Environ Sci (China) ; 100: 317-327, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33279045

RESUMEN

The biodegradation was considered as the prime mechanism of crude oil degradation. To validate the efficacy and survival of the crude oil-degrading strain in a bioremediation process, the enhanced green fluorescent protein gene (egfp) was introduced into Acinetobacter sp. HC8-3S. In this study, an oil-contaminated sediment microcosm was conducted to investigate the temporal dynamics of the physicochemical characterization and microbial community in response to bacterium amendment. The introduced strains were able to survive, flourish and degrade crude oil quickly in the early stage of the bioremediation. However, the high abundance cannot be maintained due to the ammonium (NH4+-N) and phosphorus (PO43--P) contents decreased rapidly after 15 days of remediation. The sediment microbial community changed considerably and reached relatively stable after nutrient depletion. Therefore, the addition of crude oil and degrading cells did not show a long-time impact on the original microbial communities, and sufficient nitrogen and phosphorus nutrients ensures the survive and activity of degrader. Our studies expand the understanding of the crude oil degradative processes, which will help to develop more rational bioremediation strategies.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes del Suelo , Bacterias , Biodegradación Ambiental , Hidrocarburos , Nutrientes , Microbiología del Suelo
18.
BMC Med ; 18(1): 200, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32741373

RESUMEN

BACKGROUND: Circulating cell-free DNA (cfDNA) methylation has been demonstrated to be a promising approach for non-invasive cancer diagnosis. However, the high cost of whole genome bisulfite sequencing (WGBS) hinders the clinical implementation of a methylation-based cfDNA early detection biomarker. We proposed a novel strategy in low-pass WGBS (~ 5 million reads) to detect methylation changes in circulating cell-free DNA (cfDNA) from patients with liver diseases and hepatocellular carcinoma (HCC). METHODS: The effective small sequencing depth were determined by 5 pilot cfDNA samples with relative high-depth WGBS. CfDNA of 51 patients with hepatitis, cirrhosis, and HCC were conducted using low-pass WGBS. The strategy was validated in an independent WGBS cohort of 32 healthy individuals and 26 early-stage HCC patients. Fifteen paired tumor tissue and buffy coat samples were used to characterize the methylation of hepatitis B virus (HBV) integration regions and genome distribution of cfDNA. RESULTS: A significant enrichment of cfDNA in intergenic and repeat regions, especially in previously reported HBV integration sites were observed, as a feature of cfDNA and the bias of cfDNA release. Methylation profiles nearby HBV integration sites were a better indicator for hypomethylation of tumor genome comparing to Alu and LINE (long interspersed nuclear element) repeats, and were able to facilitate the cfDNA-based HCC prediction. Hypomethylation nearby HBV integration sites (5 kb flanking) was detected in HCC patients, but not in patients with hepatitis and cirrhosis (MethylHBV5k, median:0.61 vs 0.72, P = 0.0003). Methylation levels of integration sites certain candidate regions exhibited an area under the receiver operation curve (AUC) value > 0.85 to discriminate HCC from non-HCC samples. The validation cohort achieved the prediction performance with an AUC of 0.954. CONCLUSIONS: Hypomethylation around viral integration sites aids low-pass cfDNA WGBS to serve as a non-invasive approach for early HCC detection, and inspire future efforts on tumor surveillance for oncovirus with integration activity.


Asunto(s)
Carcinoma Hepatocelular/genética , Ácidos Nucleicos Libres de Células/genética , Metilación de ADN/genética , Genómica/métodos , Virus de la Hepatitis B/patogenicidad , Neoplasias Hepáticas/genética , Sulfitos/metabolismo , Estudios de Cohortes , Femenino , Humanos , Masculino , Proyectos Piloto
19.
Neurobiol Learn Mem ; 175: 107315, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32980477

RESUMEN

Cognitive deficits following a mild traumatic brain injury (mTBI) are common and are associated with learning deficits in school-age children. Some of these deficits include problems with long-term memory, working memory, processing speeds, attention, mental fatigue, and executive function. Processing speed deficits have been associated with alterations in white matter, but the underlying mechanisms of many of the other deficits are unclear. Without a clear understanding of the underlying mechanisms we cannot effectively treat these injuries. The goal of these studies is to validate a translatable touchscreen discrimination/reversal task to identify deficits in executive function following a single or repeated mTBIs. Using a mild closed skull injury model in adolescent mice we were able to identify clear deficits in discrimination learning following repeated injuries that were not present from a single mTBI. The repeated injuries were not associated with any deficits in motor-based behavior but did induce a robust increase in astrocyte activation. These studies provide an essential platform to interrogate the underlying neurological dysfunction associated with these injuries.


Asunto(s)
Conmoción Encefálica/fisiopatología , Aprendizaje Discriminativo/fisiología , Función Ejecutiva/fisiología , Actividad Motora/fisiología , Aprendizaje Inverso/fisiología , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Conmoción Encefálica/metabolismo , Conmoción Encefálica/psicología , Análisis de la Marcha , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones , Prueba de Campo Abierto , Recurrencia , Prueba de Desempeño de Rotación con Aceleración Constante , Percepción Visual/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda