Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
ACS Nano ; 18(27): 17570-17577, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38934625

RESUMEN

The coupling of mechanical deformation and electrical stimuli at the nanoscale has been the subject of intense investigation in the realm of materials science. Recently, twisted van der Waals (vdW) materials have emerged as a platform for exploring exotic quantum states. These states are intimately tied to the formation of moiré superlattices, which can be visualized by directly exploiting the electromechanical response. However, the origin of the response, even in twisted bilayer graphene (tBLG), remains unsettled. Here, employing lateral piezoresponse force microscopy (LPFM), we investigate the electromechanical responses of marginally twisted graphene moiré superlattices with different layer thicknesses. We observe distinct LPFM amplitudes and spatial profiles in tBLG and twisted monolayer-bilayer graphene (tMBG), exhibiting effective in-plane piezoelectric coefficients of 0.05 and 0.35 pm/V, respectively. Force tuning experiments further underscored a marked divergence in their responses. The contrasting behaviors suggest different electromechanical couplings in tBLG and tMBG. In tBLG, the response near the domain walls is attributed to the flexoelectric effect, while in tMBG, the behaviors can be comprehended within the context of the piezoelectric effect. Our results not only provide insights into electromechanical and corporative effects in twisted vdW materials with different stacking symmetries but may also offer a way to engineer them at the nanoscale.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda