Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Fish Shellfish Immunol ; 141: 109059, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37678479

RESUMEN

High stocking density has been regarded as an adverse factor in bivalve aquaculture. However, its subsequent molecular response to pathogenic bacteria has been little studied. In order to study the question, a novel MyD88 was first cloned using adult noble scallops Chlamys nobilis (CnMyD88), and its tissue distribution was investigated. Then, 1860 juvenile scallops were divided into two groups with two initial densities of high density (200 individuals/layer, HD) and normal density (110 individuals/layer, ND) and in-situ cultured for three months, in which their growth, survival, and the differential expression of CnMyD88 were examined, respectively. Finally, scallops were injected with the Vibrio parahaemolyticus to assess the temporal expression of CnMyD88. As the results show, CnMyD88 cDNA has a full length of 2241 bp and contains an 1107 bp ORF that encodes a 368-derived protein. It was widely expressed in examined tissues with a significantly higher level in hemolymph, intestine, mantle, and gonad than others. Besides, the HD group showed lower growth (0.39 ± 0.05 mm/day) and survival (37.00 ± 8.49%) than the ND group (0.55 ± 0.02 mm/day and 76.82 ± 5.78%). More importantly, the HD group exhibited significantly lower expression levels of CnMyD88 in their examined tissues than the ND group. After V. parahaemolyticus challenging, CnMyD88 had significantly lower expression levels in the scallops from the HD group than that of the scallops from the ND group at 6th, 24th, and 36th. The present results indicated that high stocking density not only made adverse impacts on growth and survival but also may induce immunosuppression in the noble scallop. Therefore, appropriate low stocking density may be worth considering to adopt in scallop aquaculture.


Asunto(s)
Pectinidae , Vibrio parahaemolyticus , Humanos , Animales , Vibrio parahaemolyticus/fisiología , Factor 88 de Diferenciación Mieloide/metabolismo , Pectinidae/microbiología , ADN Complementario/genética , Acuicultura
2.
Crit Rev Food Sci Nutr ; : 1-18, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35930379

RESUMEN

Carotenoids are natural pigments that provide many health benefits to living organisms. Although terrestrial plants are the major dietary source of carotenoids for humans, aquatic animals (especially fish and shellfish) are equally important because they are rich in certain important carotenoids lacking in fruits and vegetables. Although extensive research has focused on exploring the carotenoid content and composition in fish and shellfish, this information is poorly organized. This paper reviews the scientific evidence for the carotenoid content and composition in fish and shellfish. It makes serious attempts to summarize the relevant data published on specific research questions in order to improve the understanding of various evidence to clarify the research status of carotenoids in fish and shellfish and defining topics for future studies. From the analysis of published data, it is obvious that most fish and shellfish are rich in complex carotenoids (e.g. astaxanthin, fucoxanthin, fucoxanthinol, lutein). These carotenoids have stronger antioxidant effect, higher efficiency in removing the singlet oxygen and the peroxyl radicals, and have a variety of health benefits. Carotenoid levels in fish and shellfish depend on genotype, climatic conditions of the production area, storage and cooking methods. However, the information of the bioavailability of fish/shellfish carotenoids to human is very limited, which hinders the actual contributions to health. The findings of this study can be used as a guide to select appropriate fish and shellfish as dietary sources of carotenoids, and provide information about potential fish and shellfish species for aquaculture to produce carotenoids to meet part of the growing demand for natural carotenoids.

3.
Crit Rev Food Sci Nutr ; 62(25): 6990-7014, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33847542

RESUMEN

Omega-3 Long-chain polyunsaturated fatty acids (n-3 LC-PUFA) are beneficial to human health. Since the industrial revolution, with the tremendous increase of human population, the supply of natural n-3 LC-PUFA is far lower than the nutritional need of n-3 LC-PUFA. Therefore, a new alternative source of natural n-3 LC-PUFA is urgently needed to reduce the supply and demand gap of n-3 LC-PUFA. Mollusks, mainly bivalves, are rich in n-3 LC-PUFA, but the information of bivalves' lipid profile is not well organized. Therefore, this study aims to analyze the published fatty acid profiles of bivalves and reveal the potential of bivalve aquaculture in meeting the nutritional needs of human for n-3 LC-PUFA. There are growing evidence show that the nutritional quality of bivalve lipid is not only species-specific, but also geographical specific. To date, bivalve aquaculture has not been evenly practiced across the globe. It can be seen that aquaculture is predominant in Asia, especially China. Unlike fish aquaculture, bivalve aquaculture does not rely on fishmeal and fish oil inputs, so it has better room for expansion. In order to unleash the full potential of bivalve aquaculture, there are some challenges need to be addressed, including recurrent mass mortalities of farmed bivalves, food safety and food security issues. The information of this article is very useful to provide an overview of lipid nutritional quality of bivalves, and reveal the potential of bivalve aquaculture in meeting the growing demand of human for n-3 LC-PUFA.


Asunto(s)
Bivalvos , Ácidos Grasos Omega-3 , Animales , Acuicultura , Ácidos Grasos Omega-3/análisis , Agua Dulce , Humanos , Valor Nutritivo
4.
Fish Shellfish Immunol ; 105: 263-269, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32569713

RESUMEN

High stocking densities have been shown to have adverse effects on the physiology of bivalves. The noble scallop Chlamys nobilis is one of the most important cultured shellfish in Southern China. However, the effects of scallop stocking density on its immunity is not well understood. In this context, this study was conducted to assess the effect of high stocking density on the galectin (an important protein in innate immunity) gene expression of C. nobilis during bacterial infection. A full-length galectin (CnGal) gene was cloned. The ORF of the CnGal cDNA encodes a predicted protein containing 549 aa with four CRDs and no signal peptide. Our results reveal that high stocking density in the scallop not only led to high mortality and slow growth, but also changed tissue distribution of the CnGal expression. The individuals from the high stocking density group exhibited more differences among tissues than those from the control group, but the highest expression were both recorded in hemolymph. After the Vibrio parahaeomlyticus challenge, the gene's expression levels were all significantly up-regulated in the hemolymph and gill, but the time up to peak was different between the two tissues. The findings of this study could fill a gap in knowledge about how high stocking density affect scallop immunity at the molecular level.


Asunto(s)
Galectinas/genética , Regulación de la Expresión Génica/inmunología , Expresión Génica/inmunología , Inmunidad Innata/genética , Pectinidae/genética , Pectinidae/inmunología , Vibrio parahaemolyticus/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Galectinas/química , Galectinas/metabolismo , Perfilación de la Expresión Génica , Filogenia , Densidad de Población , Alineación de Secuencia
5.
Fish Shellfish Immunol ; 97: 617-623, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31870968

RESUMEN

Noble scallop, an economically important edible marine bivalve displays polymorphism in shells (golden and brown) and flesh colors (orange and white). Mass mortality of noble scallops usually occurs during the winter months. Interestingly, carotenoid-rich golden scallops demonstrated much higher survival rates than brown scallops in winter. In order to understand the response of polymorphic noble scallops to sequential cold stress, the present study aimed to investigate the enzyme and non-enzymatic antioxidant responses of golden and brown scallops under sequential cold stress. Parameters evaluated included total carotenoid content (TCC), fatty acid composition, total antioxidant capacity (TAC), methylenedioxyamphetamine (MDA) content, catalase (CAT) activity, and superoxide dismutase (SOD) enzyme activity. The results of the present study revealed that golden scallops have higher cold tolerance than brown scallops. Golden and brown scallops are well adapted to low water temperature of above 12 °C, but in areas where winter water temperatures are below 12 °C, golden scallops are more suitable for aquaculture than brown scallops. The findings of this study are crucial to understanding the physiological responses of polymorphic scallops to cold stress and identify suitable candidates for winter aquaculture.


Asunto(s)
Carotenoides/análisis , Respuesta al Choque por Frío , Pectinidae/enzimología , Pectinidae/fisiología , Animales , Antioxidantes , Acuicultura , Catalasa/análisis , Ácidos Grasos/análisis
6.
Fish Shellfish Immunol ; 105: 144-151, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32652299

RESUMEN

Glutathione S-transferases (GSTs) play important roles in immunity by protecting organisms against the damage of reactive oxygen species (ROS). In this study, a pi-class GST cDNA sequence was first cloned from noble scallop Chlamys nobilis (named CnGSTp). The full length cDNA of CnGSTp was 922 bp, encoding a cytosolic protein of 202 amino acids residues, with predicted molecular masses of 23.1 kDa. Then an acute Vibrio Parahaemolyticus challenge experiment was conducted by using the Golden and Brown noble scallops with different total carotenoids content (TCC), and CnGSTp expression level, TCC and ROS level was separately determined. The results showed that ROS and CnGSTp expression levels were significantly up-regulate under Vibrio Parahaemolyticus challenge than the control group (P < 0.05). The Golden scallops showed significantly higher CnGSTp expression level and lower ROS level in hemocytes than the Brown ones (P < 0.05). Moreover, there is a significantly positive correlation between TCC and ROS in the Golden scallops. The present results revealed that CnGSTp plays important roles in immune response and carotenoids play assistant roles in antioxidant defense system under pathogenic stress in the noble scallop.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Gutatión-S-Transferasa pi/genética , Gutatión-S-Transferasa pi/inmunología , Inmunidad Innata/genética , Pectinidae/genética , Pectinidae/inmunología , Secuencia de Aminoácidos , Animales , Antioxidantes/metabolismo , Secuencia de Bases , Expresión Génica , Perfilación de la Expresión Génica , Gutatión-S-Transferasa pi/química , Pectinidae/enzimología , Filogenia , Alineación de Secuencia
7.
Fish Shellfish Immunol ; 100: 368-377, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32194249

RESUMEN

The 1-cyseine peroxiredoxin (Prx6) is an importantly antioxidant enzyme that protects cells from oxidative damage caused by excessive production of reactive oxygen species (ROS). In this study, we described the molecular characteristics of the noble scallop Chlamys nobilis peroxiredoxin 6 (designed as CnPrx6), immune responses and DNA protection activity of the recombinant protein. The complete ORF (696 bp) of CnPrx6 encoded a polypeptide (25.5 kDa) of 231 amino acids, harboring a conserved peroxidase catalytic center (41PVCTTE46) and the catalytic triads putatively involved in peroxidase and phospholipase A2 activities. The deduced amino acid sequence of CnPrx6 shared a relatively high amino acid sequence similarity (more than 50%). The qRT-PCR revealed that the CnPrx6 mRNA was constitutively expressed in all examined tissues, with the highest expression observed in adductor. Upon immunological challenge with Vibrio parahaemolyticus, lipopolysaccharides (LPS) and polyinosinic-polycytidylic acid (Poly I:C), the expression level of CnPrx6 mRNA was significantly up-regulated (P < 0.05). Furthermore, there was a significant difference (P < 0.05) in the expression level of CnPrx6 between golden and brown scallops. The purified recombinant CnPrx6 protein protected the supercoiled plasmid DNA from metal-catalyzed ROS damage. Taken together, these results indicated that the CnPrx6 may play an important role in modulating immune responses and minimizing DNA damage in noble scallop Chlamys nobilis.


Asunto(s)
Antioxidantes/metabolismo , Inmunidad Innata , Pectinidae/genética , Pectinidae/inmunología , Peroxiredoxina VI/genética , Peroxiredoxina VI/inmunología , Animales , Clonación Molecular , Daño del ADN , Lipopolisacáridos/administración & dosificación , Poli I-C/administración & dosificación , Regulación hacia Arriba , Vibrio parahaemolyticus/patogenicidad
8.
Fish Shellfish Immunol ; 94: 924-933, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31604148

RESUMEN

Heat shock proteins (HSPs) are a family of conserved proteins that enhance stress resistance and protect cells from external damage. In the present study, the full-length HSP70 cDNA from the noble scallop Chlamys nobilis (designated CnHSP70) was first cloned and characterized. Then, the expression of CnHSP70 in golden and brown scallops with different carotenoid content was evaluated under heat stress and Vibrio parahaemolyticus challenge. The complete CnHSP70 cDNA is 2621 bp, including a 1971 bp open reading frame (ORF) encoding a polypeptide of 656 amino acids with an estimated molecular weight of 71.55 kDa and an isoelectric point of 5.32. Based on amino acid sequence and phylogenetic analysis, the CnHSP70 gene was identified as a member of the cytoplasmic HSP70 family. The CnHSP70 was ubiquitously expressed in all examined tissues, including intestines, hemocytes, mantle, adductor and gills, with the highest expression in gills. After heat stress and V. parahaemolyticus injection, the expression levels of CnHSP70 in gills and hemocytes of golden and brown scallops were both significantly increased, indicating that the gene was involved in resistance or immune response. Moreover, under both conditions, similar expression profiles of CnHSP70 were observed between gills and hemocytes from the same color scallop, but different expression levels were detected in the same tissue from the different color scallop, which may be related to difference in their carotenoids content.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/inmunología , Inmunidad Innata/genética , Pectinidae/genética , Pectinidae/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Perfilación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/química , Calor/efectos adversos , Filogenia , Alineación de Secuencia , Estrés Fisiológico , Vibrio parahaemolyticus/fisiología
9.
Fish Shellfish Immunol ; 88: 9-16, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30825540

RESUMEN

As a major intracellular iron storage protein, ferritin plays important roles in iron homeostasis and innate immunity. In this study, two novel ferritin subunits from noble scallop Chlamys nobilis (CnFer1 and CnFer2) were identified and analyzed. The open reading frame of CnFer1 and CnFer2 was 522 and 519bp long, encoding 173 and 172 amino acids, respectively. Both ferritins contained a putative iron-binding region signature (IBRS). Analysis of putative conserved domains showed the two CnFer genes contained three key domains of ferritin subunits, a ferroxidase diiron center (E25, Y32, E59, E60, H63, E105, and Q139), an iron ion channel (H116, D129, E132) and a ferrihydrite nucleation center (D58, E59, and E62) that present in M type subunits. A putative iron response element (IRE) was observed at both CnFer genes in the 5' UTR. Phylogenetic analysis result suggested that the two genes are cytoplasmic ferritins and have the closest evolution relationship with ferritins from Mizuhopecten yessoensis. The two ferritin genes were wildly expressed in examined tissues and the highest level was found in gill. After V. parahaemolyticus challenged, both CnFer genes were significantly up-regulated suggesting that they are important proteins involved in host immune defense. Moreover, under bacterial challenge, the expression levels of both two genes in Golden scallops (rich in carotenoids) were significantly higher than that in Brown scallops (less in carotenoids) which suggesting that carotenoids enhance the immunity in scallops to defense against the bacterial stress.


Asunto(s)
Ferritinas/genética , Pectinidae/genética , Pectinidae/inmunología , Animales , Carotenoides/metabolismo , Ferritinas/metabolismo , Regulación de la Expresión Génica , Inmunidad Innata/genética , Hierro/metabolismo , Sistemas de Lectura Abierta , Pectinidae/metabolismo , Pectinidae/microbiología , Filogenia , Análisis de Secuencia de Proteína , Vibrio parahaemolyticus/inmunología
10.
Fish Shellfish Immunol ; 92: 40-44, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31132466

RESUMEN

Stocking density is a crucial factor in shellfish aquaculture that affects overall growth performance and health status. Present study analyzes the effects of stocking densities on growth, survival and hemolymph immune status of noble scallop Chlamys nobilis. The scallops with the same size were separately placed in the lantern cages (10 layers per cage) using high stocking density (500 scallops per cage) and low stocking density (100 scallops per cage) and cultivated in the same location for 60 days. The results indicated that the scallops cultivated at high stocking density had significantly higher mortality and slower growth than those cultivated at low stocking density. Moreover, the hemolymph of scallops cultivated at high density showed significantly higher bacterial load, higher reactive oxygen species (ROS), higher expression level of Nrf2 and lower expression level of Keap1, as well as lower antibacterial ability of Vibrio parahemolyticus than that of scallops cultivated at low density. The present results demonstrated that long-term overcrowding is detrimental for the scallops, which can not only lead to high mortality and slow growth, but also cause more vulnerable to pathogenic bacteria. Therefore, we speculated that high stocking density culture practice of scallops in China might be the root of infectious bacteria outbreaks.


Asunto(s)
Antioxidantes/metabolismo , Carga Bacteriana/fisiología , Expresión Génica/inmunología , Hemolinfa/inmunología , Pectinidae/inmunología , Especies Reactivas de Oxígeno/metabolismo , Vibrio parahaemolyticus/fisiología , Animales , Acuicultura , Pectinidae/crecimiento & desarrollo , Pectinidae/microbiología , Densidad de Población , Distribución Aleatoria
11.
Fish Shellfish Immunol ; 72: 377-382, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29146443

RESUMEN

Being lack of specific immune system, both enzymes and non-enzymatic antioxidants play crucial roles in immune of invertebrates. In the present study, in order to investigate immune roles of enzyme (thioredoxin, TRX) and antioxidants (carotenoids), Golden scallops with golden shell and golden muscle rich in carotenoids content and Brown scallops with brown shell and white muscle less carotenoids content of the noble scallop Chlamys nobilis were challenged by Vibrio parahaemolyticus for 48 h. Firstly, a cDNA of TRX protein gene from the scallop (named as CnTRX) was cloned and characterized. The cDNA contains 1280 bp, consisting of a 5' -UTR of 99 bp, a long 3' -UTR of 860 bp and a 321 bp open reading frame (ORF) encoding 106 amino acids. Phylogenetic analysis showed that CnTRX had a closer evolution relationship with TRX from Chlamys farreri. CnTRX was ubiquitously expressed in all examined tissues including intestine, adductor, mantle, gonad, gill, kidney, hepatopancreas and hemolymph, and the highest expression level was detected in the hemolymph. Next, CnTRX transcripts were significantly up-regulated in V. parahaemolyticus group in comparison with PBS control group. Moreover, CnTRX transcripts were significantly higher in Golden scallops than that of Brown ones at 6 h, 12 h and 24 h with bacteria challenge (P < 0.05). The present result indicates that both CnTRX and carotenoids are important factors involved in the immune defense against bacteria challenge in the noble scallop.


Asunto(s)
Carotenoides/metabolismo , Pectinidae/genética , Pectinidae/inmunología , Tiorredoxinas/genética , Tiorredoxinas/inmunología , Animales , Regulación de la Expresión Génica , Análisis de Secuencia de ADN , Vibrio parahaemolyticus/fisiología
12.
Fish Shellfish Immunol ; 83: 37-44, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30195904

RESUMEN

C-type lectins have a variety of immunological functions in invertebrates. In order to investigate whether C-type lectin gene and carotenoids do have immune influences on noble scallop Chlamys nobilis under pathogen stress, acute challenges lasting 48 h to Vibrio parahaemolyticus, lipopolysaccharide (LPS), polyinosinic polycytidylic acid (Poly I: C), and PBS were conducted in noble scallop with different carotenoids content. A multi-CRD C-type lectin gene called Cnlec-1 was cloned and its transcripts under different challenges were determined. Full length cDNA of Cnlec-1 is 2267 bp with an open reading frame (ORF) of 1845 bp encoding 614 deduced amino acids, containing four carbohydrate recognition domains (CRD1, CRD2, CRD3 and CRD4). Phylogenetic tree analysis showed that CRDs of Cnlec-1 were clustered with CRDs of shellfish C-type lectins, especially closely related to Chlamys farreri and Argopecten irradians CRDs. Cnlec-1 transcripts were detected in hemocytes, mantle, gonad, kidney, intestines, gill and adductor. Compared with PBS control group, Cnlec-1 transcripts were up-regulated in V. parahaemolyticus, LPS and Poly I: C groups. Furthermore, Cnlec-1 transcript levels of Golden scallops were significantly higher than that of Brown ones at 3-48 h (P < 0.05) in V. parahemolyticus groups, at 24 h in LPS groups and at 12-24 h in Poly I: C groups. These results suggesting that Cnlec-1 is an important immune factor involved in the defense against pathogens in the noble scallop, and carotenoids can enhance the immunity of noble scallop through up-regulating Cnlec-1 to different immunostimulants.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Carotenoides/análisis , Lectinas Tipo C/inmunología , Lectinas/inmunología , Pectinidae/efectos de los fármacos , Pectinidae/inmunología , Animales , Clonación Molecular , Inmunidad Innata , Inductores de Interferón/farmacología , Lipopolisacáridos/farmacología , Pectinidae/microbiología , Filogenia , Poli I-C/farmacología , Activación Transcripcional , Regulación hacia Arriba , Vibrio parahaemolyticus
13.
Fish Shellfish Immunol ; 82: 453-459, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30145199

RESUMEN

The noble scallop Chlamys nobilis has been a commercially important marine cultured bivalve in the Southern Sea of China for decades. Mass mortality events, however, often occur during scallops' cultivation. Mortality of up to 67%-90% was recorded at the beginning of March in 2017 in some culture areas of Nan'ao (Shantou, China), spreading to all scallops within a week. In the present study, in order to investigate the response of the noble scallop at the physiological and molecular level during mass mortality, scallops with different mortalities of 90%, 67%, and 6% were sampled from three sites at Hunter bay, Baisha bay, and Longhai, respectively. Total carotenoids content (TCC), total antioxidant capacity (TAC), malondialdehyde (MDA) content and the expression levels of three immune-related genes (toll-like receptor, C-type lectin receptor and big defensing) in different scallop tissues were determined. The scallops were divided into three groups of sub-health, lesion, and health. TAC, TCC, as well as transcript levels of CnTLR-1, Cnlec-1 and CnBD in sub-health and lesion scallops were all significantly lower (P < 0.05) than those in health scallops, while MDA in sub-health and lesion scallops were significantly higher than those in health scallops (P < 0.05). Similarly, TCC and TAC in lesion scallops were both higher than sub-health scallops. Moreover, significantly positive correlations were found between TCC and TAC (P < 0.05) and between CnTLR-1 and Cnlec-1 (P < 0.05), while significantly negative correlations were found between TCC and CnTLR-1 (P < 0.05), TCC and Cnlec-1 (P < 0.05), TAC and CnBD (P < 0.05), as well as between MDA and Cnlec-1 (P < 0.001). All the results indicate that noble scallops significantly change their physiological and molecular levels when suffering from stress, and that their antioxidant and immune response systems play important defense functions.


Asunto(s)
3,4-Metilenodioxianfetamina/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Inmunidad Innata , Pectinidae/fisiología , Transcripción Genética/inmunología , Animales , Acuicultura , China , Pectinidae/inmunología
14.
Fish Shellfish Immunol ; 56: 229-238, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27403592

RESUMEN

To investigate whether toll like receptors (TLRs) genes do have an immune influence on noble scallop Chlamys nobilis under pathogen stress, acute challenges lasting 48 h to Vibrio parahaemolyticus, lipopolysaccharide (LPS), polyinosinic polycytidylic acid (Poly I:C), and PBS were conducted in two scallop stains of orange and brown with different carotenoids content. A novel toll-like receptor gene called CnTLR-1 was cloned and its transcripts under different challenges were determined. Meantime, total carotenoids content (TCC) of different immune responses were determined to investigate whether there was a relationship between gene expression and carotenoids content. The full length cDNA of CnTLR-1 is 2982 bp with an open reading frame (ORF) of 1920 bp encoding 639-deduced amino acids, which contains five leucine-rich repeats (LRR), two LRR-C-terminal (LRRCT) motifs and a LRR-N-terminal (LRRNT) motif in the extracellular domain, a transmembrane domain and a Toll/Interleukin-1 Receptor (TIR) of 138-amino acids in the cytoplasmic region. Phylogenetic tree analysis showed that CnTLR-1 could be clustered with mollusk TLRs into one group and especially was related closely to Crassostrea gigas and Mytilus galloprovincialis TLRs. CnTLR-1 transcripts were detected in decreasing levels in the mantle, hemocytes, gill, kidney, gonad, hepatopancreas, intestines and adductor. Compared with PBS control group, CnTLR-1 transcripts were up-regulated in V. parahaemolyticus, LPS and Poly I:C groups. Further, CnTLR-1 transcripts were significantly higher in orange scallops than that of brown ones with and without pathogenic challenges. TCC, which is higher in orange scallops, was initially increased and then decreased during a 48 h immune challenge in the hemocytes. The present results indicate that CnTLR-1 is an important factor involved in the immune defense against pathogens in the noble scallop.


Asunto(s)
Carotenoides/metabolismo , Inmunidad Innata , Pectinidae/genética , Pectinidae/inmunología , Receptores Toll-Like/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Lipopolisacáridos/farmacología , Pectinidae/metabolismo , Filogenia , Poli I-C/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Receptores Toll-Like/química , Receptores Toll-Like/metabolismo , Vibrio parahaemolyticus/fisiología
15.
Fish Shellfish Immunol ; 56: 445-449, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27474446

RESUMEN

The noble scallop Chlamys nobilis has been an important marine cultured bivalve in the Southern Sea of China for decades. However, large-scale mortality events often occurred during the scallop' cultivation. As one of AMPs (antimicrobial peptides), big defensin is an important component of the innate immunity against pathogenic microorganisms in invertebrates. In order to investigate whether the big defensin can play a role in the immune defense against pathogenic microorganisms in noble scallop, a big defensin gene from the hemocytes of Chlamys nobilis (CnBD) was cloned, and the mRNA level was measured after an acute Vibrio parahaemolyticus challenge of 36 h. The CnBD cDNA contains an open reading frame (ORF) of 381 bp encoding a peptide of 126 amino acids residues. The deduce amino acid sequence of CnBD shows a high similarity with that from Argopecten irradians and displays common features of big defensin, indicating that CnBD is a new member of the big defensin family. Compared with the control group, the relative mRNA level of CnBD was significantly up-regulated at 3, 24 and 36 h. The present result indicated that CnBD played an immune role against bacterial infection in noble scallop.


Asunto(s)
Defensinas/genética , Inmunidad Innata , Pectinidae/genética , Pectinidae/inmunología , Vibrio parahaemolyticus/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Defensinas/química , Defensinas/metabolismo , Hemocitos/inmunología , Hemocitos/metabolismo , Pectinidae/metabolismo , Pectinidae/microbiología , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Regulación hacia Arriba
16.
BMC Genomics ; 16: 44, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25651863

RESUMEN

BACKGROUND: The noble scallop Chlamys nobilis Reeve displays polymorphism in shell and muscle colors. Previous research showed that the orange scallops with orange shell and muscle had a significantly higher carotenoid content than the brown ones with brown shell and white muscle. There is currently a need to identify candidate genes associated with carotenoid-based coloration. RESULTS: In the present study, 454 GS-FLX sequencing of noble scallop transcriptome yielded 1,181,060 clean sequence reads, which were assembled into 49,717 isotigs, leaving 110,158 reads as the singletons. Of the 159,875 unique sequences, 11.84% isotigs and 9.35% singletons were annotated. Moreover, 3,844 SSRs and over 120,000 high confidence variants (SNPs and INDELs) were identified. Especially, one class B scavenge receptor termed SRB-like-3 was discovered to express only in orange scallops and absent in brown ones, suggesting a significant association with high carotenoid content. Down-regulation of SRB-like-3 mRNA by RNA interference remarkably decreased blood carotenoid, providing compelling evidence that SRB-like-3 is an ideal candidate gene controlling carotenoid deposition and determining orange coloration. CONCLUSION: Transcriptome analysis of noble scallop reveals a novel scavenger receptor significantly associated with orange scallop rich in carotenoid content. Our findings pave the way for further functional elucidation of this gene and molecular basis of carotenoid deposition in orange scallop.


Asunto(s)
Carotenoides/genética , Pectinidae/genética , Pigmentación de la Piel/genética , Transcriptoma/genética , Animales , Regulación de la Expresión Génica , Mutación INDEL , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Análisis de Secuencia de ADN
17.
Nat Commun ; 15(1): 1270, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341435

RESUMEN

Sound in indoor spaces forms a complex wavefield due to multiple scattering encountered by the sound. Indoor acoustic communication involving multiple sources and receivers thus inevitably suffers from cross-talks. Here, we demonstrate the isolation of acoustic communication channels in a room by wavefield shaping using acoustic reconfigurable metasurfaces (ARMs) controlled by optimization protocols based on communication theories. The ARMs have 200 electrically switchable units, each selectively offering 0 or π phase shifts in the reflected waves. The sound field is reshaped for maximal Shannon capacity and minimal cross-talk simultaneously. We demonstrate diverse acoustic functionalities over a spectrum much larger than the coherence bandwidth of the room, including multi-channel, multi-spectral channel isolations, and frequency-multiplexed acoustic communication. Our work shows that wavefield shaping in complex media can offer new strategies for future acoustic engineering.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38110171

RESUMEN

STAT (signal transducer and activator of the transcription) proteins, are a group of highly conserved transcription factors and fundamental components of the JAK-STAT signaling pathway. They play crucial roles in a variety of biological processes, such as immunity, proliferation, differentiation, and growth. However, little information is known regarding their role in gonad development and sex determination in mollusks. In this study, we identified 3 STAT genes in Pacific Oyster Crassostrea gigas. Phylogenetic analysis showed that STATs from mollusks were highly conserved, and most of them had four identical motif regions, except for the STAT1 and STAT3 predicted sequences from Crassostrea hongkongensis. Tissue expression analysis indicated CgSTAT1 had a high expression level in most tissues, while CgSTAT3 had a low expression level in most tissues. Expression analysis of early developmental stages showed CgSTAT1 had a higher expression level from egg to D shaped larva and a lower expression level in subsequent stages. In contrast CgSTAT1, CgSTAT2 had a reverse expression pattern. Expression analysis of different developmental stages of diploid gonads indicated that CgSTAT1 had a higher expression level at the S1 and S3 stages relative to the S2 stage in females, while in males the S3 stage had a higher expression than than the S2 stage. The expression level of CgSTAT1 between diploids and triploids in females differed significantly, but there were no significant differences in males. Expression of CgSTAT2 differed significantly between diploid and triploid males. These data suggest an important role for STATs in sex differentiation in diploid and triploid oysters. Our study is the first to explore the role of STATs in sex differentiation and gonadal development in oysters, and will help us better understand the molecular mechanisms of sex differentiation in shellfish.


Asunto(s)
Crassostrea , Femenino , Masculino , Animales , Crassostrea/genética , Crassostrea/metabolismo , Triploidía , Filogenia , Gónadas/metabolismo , Genoma
19.
Mater Horiz ; 11(5): 1305-1314, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38169374

RESUMEN

Elastomers are widely used in traditional industries and new intelligent fields. However, they are inevitably damaged by electricity, heat, force, etc. during the working process. With the continuous improvement of reliability and environmental protection requirements in human production and living, it is vital to develop elastomer materials with good mechanical properties that are not easily damaged and can self-heal after being damaged. Nevertheless, there are often contradictions between mechanical properties and self-healing as well as toughness, strength, and ductility. Herein, a strong and dynamic decuple hydrogen bonding based on carbon hydrazide (CHZ) is reported, accompanied with soft polydimethylsiloxane (PDMS) chains to prepare self-healing (efficiency 98.7%), recyclable, and robust elastomers (CHZ-PDMS). The strategy of decuple hydrogen bonding will significantly impact the study of the mechanical properties of elastomers. High stretchability (1731%) and a high toughness of 23.31 MJ m-3 are achieved due to the phase-separated structure and energy dissipation. The recyclability of CHZ-PDMS further supports the concept of environmental protection. The application of CHZ-PDMS as a flexible strain sensor exhibited high sensitivity.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38479276

RESUMEN

As ectothermic invertebrates, mollusks are regarded as good environmental indicator species for determining the adverse effects of climate change on marine organisms. In the present study, the effects of cold stress on the tissue structure, antioxidant activity, and expression levels of genes were evaluated in the warm-water noble scallop Chlamys nobilis by simulating natural seawater cooled down during winter from 17 °C to 14 °C, 12 °C, 10 °C, and 9 °C. Firstly, the gill was severely damaged at 10 °C and 9 °C, indicating that it could be used as a visually indicative organ for monitoring cold stress. The methylenedioxyamphetamine (MDA) content significantly increased with the temperatures decreasing, meanwhile, the antioxidant enzyme activities superoxide dismutase (SOD) and catalase (CAT) showed a similar pattern, suggesting that the scallop made a positive response. More importantly, 6179 genes related to low temperatures were constructed in a module-gene clustering heat map including 10 modules. Furthermore, three gene modules about membrane lipid metabolism, amino acid metabolism, and molecular defense were identified. Finally, six key genes were verified, and HEATR1, HSP70B2, PI3K, and ATP6V1B were significantly upregulated, while WNT6 and SHMT were significantly downregulated under cold stress. This study provides a dynamic demonstration of the major gene pathways' response to various low-temperature stresses from a transcriptomic perspective. The findings shed light on how warm-water bivalves can tolerate cold stress and can help in breeding new strains of aquatic organisms with low-temperature resistance.


Asunto(s)
Antioxidantes , Respuesta al Choque por Frío , Pectinidae , Animales , Pectinidae/genética , Pectinidae/fisiología , Pectinidae/metabolismo , Antioxidantes/metabolismo , Branquias/metabolismo , Regulación de la Expresión Génica , Transcriptoma , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda