RESUMEN
Behavioral sensitization is a progressive increase in locomotor or stereotypic behaviours in response to drugs. It is believed to contribute to the reinforcing properties of drugs and to play an important role in relapse after cessation of drug abuse. However, the mechanism underlying this behaviour remains poorly understood. In this study, we showed that mTOR signaling was activated during the expression of behavioral sensitization to cocaine and that intraperitoneal or intra-nucleus accumbens (NAc) treatment with rapamycin, a specific mTOR inhibitor, attenuated cocaine-induced behavioural sensitization. Cocaine significantly modified brain lipid profiles in the NAc of cocaine-sensitized mice and markedly elevated the levels of phosphatidylinositol-4-monophosphates (PIPs), including PIP, PIP2, and PIP3. The behavioural effect of cocaine was attenuated by intra-NAc administration of LY294002, an AKT-specific inhibitor, suggesting that PIPs may contribute to mTOR activation in response to cocaine. An RNA-sequencing analysis of the downstream effectors of mTOR signalling revealed that cocaine significantly decreased the expression of SynDIG1, a known substrate of mTOR signalling, and decreased the surface expression of GluA2. In contrast, AAV-mediated SynDIG1 overexpression in NAc attenuated intracellular GluA2 internalization by promoting the SynDIG1-GluA2 interaction, thus maintaining GluA2 surface expression and repressing cocaine-induced behaviours. In conclusion, NAc SynDIG1 may play a negative regulatory role in cocaine-induced behavioural sensitization by regulating synaptic surface expression of GluA2.
Asunto(s)
Proteínas Portadoras/metabolismo , Cocaína/farmacología , Núcleo Accumbens/efectos de los fármacos , Receptores AMPA/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Biotinilación , Western Blotting , Sensibilización del Sistema Nervioso Central/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/metabolismoRESUMEN
BACKGROUND: Focal segmental glomerulosclerosis (FSGS) is the most common glomerular etiology of end-stage kidney disease (ESKD). Increasing evidence has indicated the reparative potential of mesenchymal stem cells (MSCs) in damaged diseased kidneys. However, the effect of bone marrow mesenchymal stem cells (BMSCs) on the FSGS progression remains unclear. This study aimed to investigate the protective effects of BMSCs on FSGS progression. METHODS: A rat model of FSGS was generated via unilateral nephrectomy plus adriamycin injection. Rat BMSCs were isolated and characterized on the basis of their differentiative potential towards adipocytes and osteoblasts and via flow cytometry analysis. Thereafter, rat BMSCs were transplanted into FSGS recipients through the caudal vein. After 8 weeks, 24-h proteinuria, serum creatinine, and urea nitrogen levels were determined. Renal morphology was assessed using a light and transmission electron microscope. MMP9 and TIMP-1 positive cells were detected via immunohistochemical analysis. Expression levels of proinflammatory cytokines IL-6 and TNF-α were examined via RT-PCR. RESULTS: The isolated adherent cells from the bone marrow of rats were phenotypically and functionally equivalent to typical MSCs. Clinical examination revealed that BMSC transplantation reduced the 24-h urinary protein excretion, and serum creatinine and urea nitrogen levels. Renal morphology was ameliorated in BMSCs-transplanted rats. Mechanistically, BMSC transplantation significantly downregulated TIMP-1 and upregulated MMP9, thereby increasing the renal MMP9/TIMP-1 ratio. Moreover, BMSC transplantation also downregulated IL-6 and TNF-α. CONCLUSIONS: BMSC transplantation can attenuate FSGS progression in a rat model of FSGS, thereby providing a theoretical foundation for the application of autologous BMSCs in clinical FSGS therapy.
Asunto(s)
Modelos Animales de Enfermedad , Progresión de la Enfermedad , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Doxorrubicina/efectos adversos , Glomeruloesclerosis Focal y Segmentaria/etiología , Masculino , Células Madre Mesenquimatosas/fisiología , Nefrectomía/efectos adversos , Ratas , Ratas Sprague-DawleyRESUMEN
OBJECTIVE: To explore the effect of resveratrol on transforming growth factor-beta1 (TGF-beta1) induced transdifferentiation of podocytes. METHODS: Mouse podocytes in vitro cultured under differentiating conditions for 10 days were divided into the normal group, the model group, the high dose resveratrol group, and the low dose resveratrol group. The podocytes in the high and low dose resveratrol groups were intervened with 5 micromol/L and 2 micromol/L resveratrol respectively for 30 min. Those in the model group and the two resveratrol treated groups were continually incubated with 5 ng/mL TGF-beta1 for 72 h. Those in the normal group were routinely cultured. The protein expression of podocyte phenotypic protein molecules such as E-cadherin, P-cadherin, zonula occludens-1 (ZO-1), NEPH1, and alpha-smooth muscle-actin (alpha-SMA) were detected by immunocytochemistry, flow cytometry (FCM), and Western blot. A simple albumin influx assay was used to evaluate the filtration barrier function of podocyte monolayer. RESULTS: Compared with the normal control group, E-cadherin (+) percentage rate, the protein expression of P-cadherin, ZO-1, and NEPH1 significantly decreased in the model group (P < 0.05), but the expression of alpha-SMA and albumin permeability across podocyte monolayers increased significantly (P < 0.05). Compared with the model group, E-cadherin (+) percentage rate significantly increased (P < 0.05) and albumin permeability across podocyte monolayers decreased significantly (P < 0.05) in the high and low dose resveratrol groups. In the low dose resveratrol group, the expression of P-cadherin and NEPH1 significantly increased (P < 0.05). In the high dose resveratrol group, the expression of P-cadherin, ZO-1, and NEPH1 increased significantly, and the expression of alpha-SMA decreased significantly (P < 0.05). The correlations between resveratrol concentrations and the expression of E-cadherin (+), P-cadherin, and NEPH1 were significantly positive (r(E-cadherin (+)) = 0.772, r(P-cadherin) = 0.756, r(NEPH1) = 0.809, P < 0.05). CONCLUSION: The role of resveratrol in inhibiting TGF-beta1 induced phenotype abnormality might be an important mechanism for preserving the integrality of glomerular filtration barrier and decreasing proteinuria.
Asunto(s)
Transdiferenciación Celular/efectos de los fármacos , Podocitos/citología , Podocitos/efectos de los fármacos , Estilbenos/farmacología , Animales , Células Cultivadas , Túbulos Renales/citología , Túbulos Renales/efectos de los fármacos , Ratones , Resveratrol , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
Renal injury is an important factor in the development of chronic kidney diseases that pathologically manifested as renal fibrosis and podocyte damage. In the disease state, renal fibroblasts lead to high expression levels of α-smooth muscle actin (α-SMA), while podocytes undergo epithelial-mesenchymal transition, leading to proteinuria. Celastrol, a bioactive compound in the medicinal plant Tripterygium wilfordii, was found to delay the progression of early diabetic nephropathy and attenuate renal fibrosis in mice with unilateral ureteral obstruction. However, its effect on the renal system in 5/6 nephrectomized (Nx) rats remains unknown. The aim of this study was to explore the protective effects of celastrol and its underlying mechanisms in 5/6 Nx rats. We found that 24 h proteinuria and levels of blood urea nitrogen, serum creatinine, triglycerides, serum P, renal index and cholesterol significantly increased (P < 0.05), while that of serum albumin decreased significantly in 5/6 Nx rats. After intervention with celastrol, 24 h proteinuria and levels of blood urea nitrogen, serum creatinine, triglycerides, serum P, renal index, and cholesterol significantly decreased, while that of serum albumin significantly increased. Renal tissue pathological staining and transmission electron microscopy showed that celastrol ameliorated kidney injury and glomerular podocyte foot injury and induced significant anti-inflammatory effects. Quantitative polymerase chain reaction (PCR) and western blotting results revealed that nephrin and NEPH1 expression levels were upregulated, whereas α-SMA and Col4a1 expression levels were downregulated in the celastrol group. Celastrol inhibited the expression of transforming growth factor (TGF)-ß1/Smad3 signaling pathway-related molecules such as TGF-ß1 and P-Smad3. In summary, celastrol contributes to renal protection by inhibiting the epithelial-mesenchymal transdifferentiation and TGF-ß1/Smad3 pathways.
Asunto(s)
Transición Epitelial-Mesenquimal , Riñón , Triterpenos Pentacíclicos , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Animales , Ratones , Ratas , Colesterol , Creatinina , Fibrosis , Riñón/efectos de los fármacos , Riñón/patología , Albúmina Sérica , Triglicéridos , Triterpenos Pentacíclicos/farmacología , NefrectomíaRESUMEN
AIM: The aim of this study was to investigate the renoprotective effects of exosomes derived from rat bone marrow mesenchymal stem cells (rBMSCs) in a rat model of 5/6 nephrectomy (Nx)-induced chronic kidney disease (CKD). METHODS: A rat model of 5/6 Nx-induced CKD was established using conventional method. rBMSC-derived exosomes were isolated using ultracentrifugation and characterized. The exosomes were injected into 5/6 Nx rats through the caudal vein. After 12 weeks, 24 h proteinuria, serum creatinine (SCr), and blood urea nitrogen (BUN) levels were evaluated, and renal pathology was analyzed by H&E and Masson staining, and transmission electron microscopy. The expression of klotho was analyzed and the activity of the klotho promoter was evaluated using a luciferase reporter assay. RESULTS: The isolated exosomes showed typical morphological features. Exosomes transplantation reduced 24 h urinary protein excretion, and SCr and BUN levels in 5/6 Nx-induced CKD rats. Furthermore, renal pathology was improved in the exosome-treated 5/6 Nx rats. Mechanistically, the exosomes significantly upregulated the activity of klotho promoter and its expression. CONCLUSIONS: Transplantation of rBMSC-derived exosomes may protect against kidney injury, probably by regulating klotho activity and expression. Our results provide a theoretical basis for the application of rBMSC-derived exosomes in CKD therapy.