RESUMEN
BACKGROUND: Proteins harboring the SPX domain are crucial for the regulation of phosphate (Pi) homeostasis in plants. This study aimed to identify and analyze the entire SPX gene family within the cucumber genome. RESULTS: The cucumber genome encompassed 16 SPX domain-containing genes, which were distributed across six chromosomes and categorized into four distinct subfamilies: SPX, SPX-MFS, SPX-EXS and SPX-RING, based on their structure characteristics. Additionally, gene duplications and synteny analysis were conducted for CsSPXs, revealing that their promoter regions were enriched with a variety of hormone-responsive, biotic/abiotic stress and typical P1BS-related elements. Tissue expression profiling of CsSPX genes revealed that certain members were specifically expressed in particular organs, suggesting essential roles in cucumber growth and development. Under low Pi stress, CsSPX1 and CsSPX2 exhibited a particularly strong response to Pi starvation. It was observed that the cucumber cultivar Xintaimici displayed greater tolerance to low Pi compared to black-spined cucumber under low Pi stress conditions. Protein interaction networks for the 16 CsSPX proteins were predicted, and yeast two-hybrid assay revealed that CsPHR1 interacted with CsSPX2, CsSPX3, CsSPX4 and CsSPX5, implying their involvement in the Pi signaling pathway in conjunction with CsPHR1. CONCLUSION: This research lays the foundation for further exploration of the function of the CsSPX genes in response to low Pi stress and for elucidating the underlying mechanism.
Asunto(s)
Cucumis sativus , Familia de Multigenes , Fósforo , Proteínas de Plantas , Cucumis sativus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fósforo/metabolismo , Fósforo/deficiencia , Genoma de Planta , Genes de Plantas , Regulación de la Expresión Génica de las Plantas , FilogeniaRESUMEN
BACKGROUND: Although immune checkpoint inhibitors (ICIs) have revolutionized the landscape of cancer treatment, only a minority of colorectal cancer (CRC) patients respond to them. Enhancing tumor immunogenicity by increasing major histocompatibility complex I (MHC-I) surface expression is a promising strategy to boost the antitumor efficacy of ICIs. METHODS: Dual luciferase reporter assays were performed to find drug candidates that can increase MHC-I expression. The effect of nilotinib on MHC-I expression was verified by dual luciferase reporter assays, qRT-PCR, flow cytometry and western blotting. The biological functions of nilotinib were evaluated through a series of in vitro and in vivo experiments. Using RNA-seq analysis, immunofluorescence assays, western blotting, flow cytometry, rescue experiments and microarray chip assays, the underlying molecular mechanisms were investigated. RESULTS: Nilotinib induces MHC-I expression in CRC cells, enhances CD8+ T-cell cytotoxicity and subsequently enhances the antitumor effects of anti-PDL1 in both microsatellite instability and microsatellite stable models. Mechanistically, nilotinib promotes MHC-I mRNA expression via the cGAS-STING-NF-κB pathway and reduces MHC-I degradation by suppressing PCSK9 expression in CRC cells. PCSK9 may serve as a potential therapeutic target for CRC, with nilotinib potentially targeting PCSK9 to exert anti-CRC effects. CONCLUSION: This study reveals a previously unknown role of nilotinib in antitumor immunity by inducing MHC-I expression in CRC cells. Our findings suggest that combining nilotinib with anti-PDL1 therapy may be an effective strategy for the treatment of CRC.
Asunto(s)
Neoplasias Colorrectales , Pirimidinas , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Humanos , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Ratones , Inestabilidad de Microsatélites/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Transducción de Señal/efectos de los fármacosRESUMEN
BACKGROUND: Extracellular ATP-AMP-adenosine metabolism plays a pivotal role in modulating tumor immune responses. Previous studies have shown that the conversion of ATP to AMP is primarily catalysed by Ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1/CD39), a widely studied ATPase, which is expressed in tumor-associated immune cells. However, the function of ATPases derived from tumor cells themselves remains poorly understood. The purpose of this study was to investigate the role of colon cancer cell-derived ATPases in the development and progression of colon cancer. METHODS: Bioinformatic and tissue microarray analyses were performed to investigate the expression of ATPase family members in colon cancer. An ATP hydrolysis assay, high-performance liquid chromatography (HPLC), and CCK8 and colony formation assays were used to determine the effects of ENTPD2 on the biological functions of colon cancer cells. Flow cytometric and RNA-seq analyses were used to explore the function of CD8+ T cells. Immunoelectron microscopy and western blotting were used to evaluate the expression of ENTPD2 in exosomes. Double-labelling immunofluorescence and western blotting were used to examine the expression of ENTPD2 in serum exosomes and colon cancer tissues. RESULTS: We found that ENTPD2, rather than the well-known ATPase CD39, is highly expressed in cancer cells and is significantly positively associated with poor patient prognosis in patients with colon cancer. The overexpression of ENTPD2 in cancer cells augmented tumor progression in immunocompetent mice by inhibiting the function of CD8+ T cells. Moreover, ENTPD2 is localized primarily within exosomes. On the one hand, exosomal ENTPD2 reduces extracellular ATP levels, thereby inhibiting P2X7R-mediated NFATc1 nuclear transcription; on the other hand, it facilitates the increased conversion of ATP to adenosine, hence promoting adenosine-A2AR pathway activity. In patients with colon cancer, the serum level of exosomal ENTPD2 is positively associated with advanced TNM stage and high tumor invasion depth. Moreover, the level of ENTPD2 in the serum exosomes of colon cancer patients is positively correlated with the ENTPD2 expression level in paired colon cancer tissues, and the ENTPD2 level in both serum exosomes and tissues is significantly negatively correlated with the ENTPD2 expression level in tumor-infiltrating CD8+ T cells. CONCLUSION: Our study suggests that exosomal ENTPD2, originated from colon cancer cells, contributes to the immunosuppressive microenvironment by promoting ATP-adenosine metabolism. These findings highlight the importance of exosome-derived hydrolytic enzymes as independent entities in shaping the tumor immune microenvironment.
Asunto(s)
Adenosina Trifosfatasas , Linfocitos T CD8-positivos , Neoplasias del Colon , Exosomas , Animales , Femenino , Humanos , Masculino , Ratones , Adenosina Trifosfato/metabolismo , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Exosomas/metabolismo , Reprogramación Metabólica , Receptor de Adenosina A2A , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismoRESUMEN
Colorectal cancer (CRC) is a common malignancy worldwide nowadays and liver metastasis is the primary cause of death in patients with CRC. Although lysosomal integral membrane protein 2 (LIMP2) has been reported to play important roles in gastric cancer and prostate cancer, its role in CRC remains unclear. The aim of this study was to investigate the function of LIMP2 in CRC invasion and migration, along with the potential underlying molecular mechanisms. We found that LIMP2 levels were higher in CRC tissues compared to adjacent normal tissues. Kaplan-Meier survival analysis showed that high expression of LIMP2 was associated with worse prognosis in CRC patients. Knockdown of LIMP2 significantly inhibited invasion, migration, and wound healing abilities of CRC cells in vitro, and inhibited CRC liver metastasis in vivo. Additionally, LIMP2 knockdown inhibited autophagy in CRC. Therefore, LIMP2 plays an important role in CRC progression. High expression of LIMP2 was associated with worse prognosis in CRC patients. Knockdown LIMP2 can effectively inhibit CRC cell migration and invasion in vitro and prevent liver metastasis in vivo. These findings suggest that LIMP2 may serve as an independent prognostic factor and potential therapeutic target for CRC.
Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Neoplasias de la Próstata , Masculino , Humanos , Movimiento Celular/genética , Neoplasias Hepáticas/genética , Proteínas de Membrana de los Lisosomas , Neoplasias Colorrectales/genéticaRESUMEN
BACKGROUND: Autophagy is involved in nasopharyngeal carcinoma (NPC) radioresistance. Replication protein A 1 (RPA1) and RPA3, substrates of the RPA complex, are potential therapeutic targets for reversing NPC radioresistance. Nevertheless, the role of RPA in autophagy is not adequately understood. This investigation was performed to reveal the cytotoxic mechanism of a pharmacologic RPA inhibitor (RPAi) in NPC cells and the underlying mechanism by which RPAi-mediated autophagy regulates NPC radiosensitivity. METHODS AND RESULTS: We characterized a potent RPAi (HAMNO) that was substantially correlated with radiosensitivity enhancement and proliferative inhibition of in vivo and in NPC cell lines in vitro. We show that the RPAi induced autophagy at multiple levels by inducing autophagic flux, AMPK/mTOR pathway activation, and autophagy-related gene transcription by decreasing glycolytic function. We hypothesized that RPA inhibition impaired glycolysis and increased NPC dependence on autophagy. We further demonstrated that combining autophagy inhibition with chloroquine (CQ) treatment or genetic inhibition of the autophagy regulator ATG5 and RPAi treatment was more effective than either approach alone in enhancing the antitumor response of NPC to radiation. CONCLUSIONS: Our study suggests that HAMNO is a potent RPAi that enhances radiosensitivity and induces autophagy in NPC cell lines by decreasing glycolytic function and activating autophagy-related genes. We suggest a novel treatment strategy in which pharmacological inhibitors that simultaneously disrupt RPA and autophagic processes improve NPC responsiveness to radiation.
Asunto(s)
Antineoplásicos , Autofagia , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Tolerancia a Radiación , Proteína de Replicación A , Humanos , Antineoplásicos/uso terapéutico , Apoptosis , Autofagia/efectos de los fármacos , Autofagia/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/genética , Proteína de Replicación A/antagonistas & inhibidores , Proteína de Replicación A/genética , Proteína 5 Relacionada con la Autofagia/genéticaRESUMEN
BACKGROUND: The inhibitor of ß-catenin and T-cell factor (ICAT) is a direct negative regulator of the canonical Wnt signaling pathway, which is an attractive therapeutic target for colorectal cancer (CRC). Accumulating evidence suggests that ICAT interacts with other proteins to exert additional functions, which are not yet fully elucidated. METHODS: The overexpression of ICAT of CRC cells was conducted by lentivirus infection and plasmids transfection and verified by quantitative real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) and Western blotting. The effect of ICAT on the mobility of CRC cells was assessed by wound healing assay and transwell assay in vitro and lung metastasis in vivo. New candidate ICAT-interacting proteins were explored and verified using the STRING database, silver staining, co-immunoprecipitation mass spectrometry analysis (Co-IP/MS), and immunofluorescence (IF) staining analysis. RESULT: Inhibitor of ß-catenin and T-cell factor overexpression promoted in vitro cell migration and invasion and tumor metastasis in vivo. Co-IP/MS analysis and STRING database analyses revealed that junction plakoglobin (JUP), a homolog of ß-catenin, was involved in a novel protein interaction with ICAT. Furthermore, JUP downregulation impaired ICAT-induced migration and invasion of CRC cells. In addition, ICAT overexpression activated the NF-κB signaling pathway, which led to enhanced CRC cell migration and invasion. CONCLUSION: Inhibitor of ß-catenin and T-cell factor promoted CRC cell migration and invasion by interacting with JUP and the NF-κB signaling pathway. Thus, ICAT could be considered a protein diagnostic biomarker for predicting the metastatic ability of CRC.
Asunto(s)
Neoplasias Colorrectales , beta Catenina , Proteínas Adaptadoras Transductoras de Señales , Biomarcadores , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , FN-kappa B/metabolismo , Metástasis de la Neoplasia , Factores de Transcripción TCF/metabolismo , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo , gamma Catenina/metabolismoRESUMEN
In this study, a reliable and sensitive ultra-high performance liquid chromatography coupled with fourier transform ion cyclotron resonance mass spectrometry method was developed for the systematic study of the metabolic profile of Kudiezi injection in rat plasma, bile, urine, and feces after intravenous administration of a single dose. The chromatographic separation was performed on an Agilent Eclipse Plus C18 column (4.6 mm × 50 mm, 1.8 µm) and the identification of prototype components and metabolites was achieved on a Bruker Solarix 7.0 T ultra-high resolution spectrometer in negative ion mode. Results indicated that a total of 76 constituents including 29 prototype compounds and 47 metabolites (10 phase I metabolites and 37 phase II metabolites) were tentatively identified. And the metabolic pathways of these prototype compounds including hydroxylation, dehydrogenation, glucuronidation, and sulfate conjugation. In conclusion, the developed method with high resolution and sensitivity was effective for screening and identification of prototypes and metabolites of Kudiezi injection in vivo. Moreover, these results would provide significant information for further pharmacokinetic and pharmacological research of Kudiezi injection in vivo.
Asunto(s)
Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Análisis de Fourier , Espectrometría de Masas , Metaboloma , Animales , Bilis/química , Ciclotrones , Heces/química , Hidrólisis , Hidroxilación , Inyecciones , Masculino , Plasma/química , Ratas , Ratas Sprague-Dawley , Orina/químicaRESUMEN
In brain MR images, the noise and low-contrast significantly deteriorate the segmentation results. In this paper, we propose an automatic unsupervised segmentation method integrating dual-tree complex wavelet transform (DT-CWT) with K-mean algorithm for brain MR image. Firstly, a multi-dimensional feature vector is constructed based on the intensity, the low-frequency subband of DT-CWT and spatial position information. Then, a spatial constrained K-mean algorithm is presented as the segmentation system. The proposed method is validated by extensive experiments using both simulated and real T1-weighted MR images, and compared with the state-of-the-art algorithms.
Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Análisis de Ondículas , HumanosRESUMEN
Trichoderma can promote plant growth under saline stress, but the mechanisms remain to be revealed. In this study, we investigate photosynthetic gas exchange, photosystem II (PSII) performance, nitrogen absorption and accumulation in a medicinal plant wolfberry (Lycium chinense) in saline soil supplemented with Trichoderma biofertilizer (TF). Larger nitrogen and biomass accumulation were found in plants supplemented with TF than with organic fertilizer (OF), suggesting that Trichoderma asperellum promoted plant growth and nitrogen accumulation under saline stress. T. asperellum strengthened root nitrogen (N) absorption according to greater increased root NH4+ and NO3- influxes under supplement with TF than OF, while nitrogen assimilative enzymes such as nitrate reductase, nitrite reductase and glutamine synthetase activities in roots and leaves were also stimulated. Thus, the elevated N accumulation derived from the induction of T. asperellum on nitrogen absorption and assimilation. Greater increased photosynthetic rate (Pn) and photosynthetic N-use efficiency under supplement with TF than OF illustrated that T. asperellum enhanced photosynthetic capacity and N utilization under saline stress. Although increased leaf stomatal conductance contributed to carbon (C) isotope fractionation under TF supplement, leaf 13C abundance was significantly increased by supplement with TF rather than OF, indicating that T. asperellum raised CO2 assimilation to a greater extent, reducing C isotope preference. Trichoderma asperellum optimized electron transport at PSII donor and acceptor sides under saline stress because of lower K and J steps in chlorophyll fluorescence transients under supplement with TF than OF. The amount of PSII active reaction centers was also increased by T. asperellum. Thus, PSII performance was upgraded, consistent with greater heightened delayed chlorophyll fluorescence transients and I1 peak under supplement with TF than OF. In summary, TF acted to increase N nutrient acquisition and photosynthetic C fixation resulting in enhanced wolfberry growth under saline soil stress.
Asunto(s)
Hypocreales , Lycium , Lycium/metabolismo , Clorofila , Nitrógeno , Suelo , Fotosíntesis , Hojas de la Planta/metabolismo , Complejo de Proteína del Fotosistema II , IsótoposRESUMEN
BACKGROUND: The burden of elderly cardiovascular disease (CVD) has received increasing attention with population ageing worldwide. AIMS: We reported on the global CVD burden in elderly individuals over 70, 1990-2019. METHODS AND RESULTS: Based on the Global Burden of Disease Study 2019, elderly CVD burden data were analysed. Temporal burden trends were analysed with the joinpoint model. The slope index and concentration index were used to evaluate health inequality. From 1990 to 2019, the global elderly CVD incidence, prevalence, death, and disability-adjusted life year rates generally decreased. However, the current burden remains high. The rapid growth in burden in parts of sub-Saharan Africa and Asia is a cause for concern. Countries with a higher socio-demographic index (SDI) have generally seen a greater decrease in burden, while countries with a lower SDI have generally experienced increases or smaller declines in burden. Health inequality analysis confirmed that the burden was gradually concentrating towards countries with a low SDI. Among the different CVDs, ischaemic heart disease causes the greatest burden in elderly individuals. Most CVD burdens increase with age, but stroke and peripheral vascular disease show markedly different distributional characteristics. In addition, the burden of hypertensive heart disease shows an unusual shift towards high-SDI countries. High systolic blood pressure was consistently the leading risk factor for CVD among elderly individuals. CONCLUSION: The burden of CVD in older people remains severe and generally tends to shift to lower-SDI countries. Policymakers need to take targeted measures to reduce its harm.
Asunto(s)
Enfermedades Cardiovasculares , Cardiopatías , Hipertensión , Anciano , Humanos , Enfermedades Cardiovasculares/epidemiología , Carga Global de Enfermedades , Disparidades en el Estado de SaludRESUMEN
The abuse and residue of herbicides in the black soil area had seriously affected the soil structure, function and crop growth, posing severe threats to agricultural soil environment and public health. Given the limitation of routine microbial remediation, innovative and eco-friendly functional bacterial biofilm which could adapt under adverse conditions was developed on the biochar to investigate its enhanced bioremediation and metabolic characteristics of typical herbicide atrazine. Results revealed that the atrazine degrading strain Acinetobacter lwoffii had competitive advantage in soil indigenous microorganisms and formed dense biofilms on the biochar which was beneficial to cell viability maintenance and aggregations. Metatranscriptomics and RT-qPCR analysis demonstrated that the biochar-mediated biofilm improved the frequency of intercellular communications through quorum sensing and two-component signal regulation systems, and enhanced the atrazine biodegradation efficiency through horizontal gene transfer in co-metabolism mode, providing important scientific basis for the biological remediation of farmland soil non-point source pollution.
Asunto(s)
Atrazina , Carbón Orgánico , Herbicidas , Contaminantes del Suelo , Atrazina/química , Biodegradación Ambiental , Contaminantes del Suelo/metabolismo , Herbicidas/metabolismo , Suelo/química , Bacterias/metabolismo , Biopelículas , Microbiología del SueloRESUMEN
Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gastrointestinal tract for which treatment options remain limited. In this study, we used a dual-luciferase-based screening of an FDA-approved drug library, identifying Bazedoxifene (BZA) as an inhibitor of the NF-κB pathway. We further investigated its therapeutic effects in a dextran sodium sulfate (DSS)-induced colitis model and explored its impact on gut microbiota regulation and the underlying molecular mechanisms. Our results showed that BZA significantly reduced DSS-induced colitis symptoms in mice, evidenced by decreased colon length shortening, lower histological scores, and increased expression of intestinal mucosal barrier-associated proteins, such as Claudin 1, Occludin, Zo-1, Mucin 2 (Muc2), and E-cadherin. Used independently, BZA showed therapeutic effects comparable to those of infliximab (IFX). In addition, BZA modulated the abundance of gut microbiota especially Bifidobacterium pseudolongum, and influenced microbial metabolite production. Crucially, BZA's alleviation of DSS-induced colitis in mice was linked to change in gut microbiota composition, as evidenced by in vivo gut microbiota depletion and fecal microbiota transplantation (FMT) mice model. Molecularly, BZA inhibited STAT3 and NF-κB activation in DSS-induced colitis in mice. In general, BZA significantly reduced DSS-induced colitis in mice through modulating the gut microbiota and inhibiting STAT3 and NF-κB activation, and its independent use demonstrated a therapeutic potential comparable to IFX. This study highlights gut microbiota's role in IBD drug development, offering insights for BZA's future development and its clinical applications.
Asunto(s)
Colitis , Sulfato de Dextran , Microbioma Gastrointestinal , FN-kappa B , Factor de Transcripción STAT3 , Transducción de Señal , Animales , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis/microbiología , Colitis/patología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos , Indoles/farmacología , Indoles/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Colon/microbiología , Masculino , HumanosRESUMEN
This research aimed to engineer magnetic hydroxyapatite-coated iron-chromium (HAp-FeCr) microspheres to enhance dental surface polishing and plaque elimination. Utilizing a tailored sol-gel approach, the HAp-FeCr microspheres were synthesized and exhaustively characterized via scanning electron microscopy, energy-dispersive X-ray spectroscopy, ζ-potential, X-ray diffractometry, and X-ray photoelectron spectroscopy methodologies. Key findings showcased that these microspheres retained their magnetic properties post-HAp coating, as evidenced by the magnetization curves. An innovative magnetic polishing system was developed, incorporating these microspheres and a 2000 rpm magnet. Comparative evaluations between traditional air-powder polishing and the proposed magnetic technique demonstrated the latter's superiority. Notably, the magnetic polishing led to a substantial reduction in dental plaque on the tooth surface, decreasing bacterial adhesion and early biofilm formation by Streptococcus gordonii and Lactobacillus acidophilus, where the most pronounced effects were observed in samples with elevated HAp content. A significant 60% reduction in dental plaque was achieved with the magnetic method relative to air-powder polishing. Furthermore, the HAp-FeCr microspheres' biocompatibility was verified through cytotoxicity tests and animal studies. In essence, the magnetic HAp-FeCr microspheres present a novel and efficient strategy for dental treatments, holding immense potential for improving oral health.
Asunto(s)
Placa Dental , Durapatita , Animales , Durapatita/química , Hierro , Microesferas , Polvos , Fenómenos Magnéticos , Propiedades de SuperficieRESUMEN
Uncertainty exists regarding the mechanisms by which hypoxia-inducible factors (HIFs) control CD8+T-cell migration into tumor microenvironments. Here, we found that HIF-1α knockdown or overexpression resulted in increased or decreased CXCL9, -10, and -11 expression in vitro, respectively. Gene Set Variation Analysis revealed that elevated HIF-1α levels correlated with a poor prognosis, severe pathological stage, and an absence of CD8+ T cells in the tumor microenvironment in colorectal cancer (CRC) patients. HIF-1α was inversely associated with pathways beneficial to anti-tumor immunotherapy and cytokine/chemokine function. In vivo, inhibiting HIF-1α or its upstream regulator BIRC2 significantly suppressed tumor growth and promoted CD8+ T-cell infiltration. CXCR3 neutralizing antibodies reversed these effects, implicating the involvement of CXCL9, -10, and -11/CXCR3 axis. The presence of HIF-1α weakened the upregulation of CXCL9, -10, and -11 by bleomycin and doxorubicin. Combining HIF-1α inhibition with bleomycin promoted CD8+ T-cell infiltration and tumor suppression in vivo. Moreover, doxorubicin could upregulate CXCL9, -10 and -11 by suppressing HIF-1α. Our findings highlight the potential of HIF-1α inhibition to improve CRC microenvironments and increase chemotherapy sensitivity.
Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Humanos , Bleomicina , Linfocitos T CD8-positivos , Línea Celular Tumoral , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Citocinas , Doxorrubicina/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Microambiente TumoralRESUMEN
MicroRNAs (miRNAs) are small non-coding RNAs with the unique ability to degrade or block specific RNAs and regulate many cellular processes. Neuroinflammation plays the pivotal role in the occurrence and development of multiple central nervous system (CNS) diseases. The ability of miRNAs to enhance or restrict neuroinflammatory signaling pathways in CNS diseases is an emerging and important research area, including neurodegenerative diseases, stroke, and traumatic brain injury (TBI). In this review, we summarize the roles and regulatory mechanisms of recently identified miRNAs involved in neuroinflammation-mediated CNS diseases, aiming to explore and provide a better understanding and direction for the treatment of CNS diseases.
Asunto(s)
Lesiones Traumáticas del Encéfalo , MicroARNs , Accidente Cerebrovascular , Humanos , MicroARNs/genética , Enfermedades Neuroinflamatorias , Lesiones Traumáticas del Encéfalo/genéticaRESUMEN
Background: Neuroinflammation is involved in the development of Parkinson's disease (PD). Calhm2 plays an important role in the development of microglial inflammation, but whether Calhm2 is involved in PD and its regulatory mechanisms are unclear. Methods: To study the role of Calhm2 in the development of PD, we utilized conventional Calhm2 knockout mice, microglial Calhm2 knockout mice and neuronal Calhm2 knockout mice, and established the MPTP-induced PD mice model. Moreover, a series of methods including behavioral test, immunohistochemistry, immunofluorescence, real-time polymerase chain reaction, western blot, mass spectrometry analysis and co-immunoprecipitation were utilized to study the regulatory mechanisms. Results: We found that both conventional Calhm2 knockout and microglial Calhm2 knockout significantly reduced dopaminergic neuronal loss, and decreased microglial numbers, thereby improving locomotor performance in PD model mice. Mechanistically, we found that Calhm2 interacted with EFhd2 and regulated downstream STAT3 signaling in microglia. Knockdown of Calhm2 or EFhd2 both inhibited downstream STAT3 signaling and inflammatory cytokine levels in microglia. Conclusion: We demonstrate the important role of Calhm2 in microglial activation and the pathology of PD, thus providing a potential therapeutic target for microglia-mediated neuroinflammation-related diseases.
Asunto(s)
Canales de Calcio , Enfermedad de Parkinson Secundaria , Animales , Ratones , Proteínas de Unión al Calcio , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/patología , Enfermedades Neuroinflamatorias , Transducción de Señal , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/genética , Canales de Calcio/genéticaRESUMEN
Apolipoprotein E (apoE) has previously been reported to play vital roles in tumor progression. However, the impact of apoE on colorectal cancer (CRC) metastasis remains largely unexplored. This study aimed to investigate the role of apoE in CRC metastasis and to identify the transcription factor and receptor of apoE involved in regulation of CRC metastasis. Bioinformatic analyses were conducted to examine the expression pattern and prognosis of apolipoproteins. APOE-overexpressing cell lines were utilized to explore the effects of apoE on proliferation, migration and invasion of CRC cells. Additionally, the transcription factor and receptor of apoE were screened via bioinformatics, and further validated through knockdown experiments. We discovered that the mRNA levels of APOC1, APOC2, APOD and APOE were higher in lymphatic invasion group, and a higher apoE level indicated poorer overall survival and progression-free interval. In vitro studies demonstrated that APOE-overexpression did not affect proliferation but promoted the migration and invasion of CRC cells. We also reported that APOE-expression was modulated by the transcription factor Jun by activating the proximal promoter region of APOE, and APOE-overexpression reversed the metastasis suppression of JUN knockdown. Furthermore, bioinformatics analysis suggested an interaction between apoE and low-density lipoprotein receptor-related protein 1 (LRP1). LRP1 was highly expressed in both the lymphatic invasion group and the APOEHigh group. Additionally, we found that APOE-overexpression upregulated LRP1 protein levels, and LRP1 knockdown attenuated the metastasis-promoting function of APOE. Overall, our study suggests that the Jun-APOE-LRP1 axis contributes to tumor metastasis in CRC.
Asunto(s)
Apolipoproteínas E , Neoplasias Colorrectales , Humanos , Apolipoproteínas E/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Factores de Transcripción/metabolismo , Movimiento Celular/genética , Proteínas Portadoras , Neoplasias Colorrectales/genéticaRESUMEN
Major depressive disorder (MDD) is a common psychiatric disorder that severely affects human life and health. However, the pathological mechanism of MDD is unclear, and effective treatment strategies are urgently needed. Microglia-mediated neuroinflammation is closely associated with the pathophysiology of depression. Bergapten (BG) is a natural pharmaceutical monomer with anti-inflammatory effects; however, its role in neuroinflammation and depression remains unclear. In this study, we employed a lipopolysaccharide (LPS) injection-induced acute depression mouse model, and found that treatment with BG significantly alleviated LPS-induced depression-like behavior in mice. BG administration largely decreased the increase in microglial numbers and rescued the microglial morphological changes induced by LPS injection. Furthermore, transcriptomic changes revealed a protective role of BG in the hippocampus of mice. Mechanistically, we found that BG directly inhibited cyclooxygenase 2 (COX2) activity, and suppressed nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in microglia. Together, these results highlight the important role of BG in microglial activation, neuroinflammation, and depression-like behavior, thus providing a new candidate drug for depression treatment.
Asunto(s)
Trastorno Depresivo Mayor , FN-kappa B , Animales , Humanos , Ratones , 5-Metoxipsoraleno/farmacología , Ciclooxigenasa 2/metabolismo , Depresión/tratamiento farmacológico , Depresión/inducido químicamente , Trastorno Depresivo Mayor/metabolismo , Lipopolisacáridos/toxicidad , Microglía/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Enfermedades Neuroinflamatorias , Transducción de SeñalRESUMEN
Antibody-secreting B cells have long been considered the central element of gut homeostasis; however, tumor-associated B cells in human colorectal cancer (CRC) have not been well characterized. Here, we show that the clonotype, phenotype, and immunoglobulin subclasses of tumor-infiltrating B cells have changed compared to adjacent normal tissue B cells. Remarkably, the tumor-associated B cell immunoglobulin signature alteration can also be detected in the plasma of patients with CRC, suggesting that a distinct B cell response was also evoked in CRC. We compared the altered plasma immunoglobulin signature with the existing method of CRC diagnosis. Our diagnostic model exhibits improved sensitivity compared to the traditional biomarkers, CEA and CA19-9. These findings disclose the altered B cell immunoglobulin signature in human CRC and highlight the potential of using the plasma immunoglobulin signature as a non-invasive method for the assessment of CRC.
RESUMEN
This paper constructs a platform framework for extensive data analysis of college students' psychological quality with the help of the thinking mode of big data and related technologies and proposes the construction principles, data sources, data processing methods, data platform construction, and platform application of big data analysis platform for college students' psychological quality assessment. This paper combines the application methods of big data technology, collects the management data related to the psychological quality assessment of college students, saves them into the system database with certain storage logic, and realizes the function of psychological quality assessment through the design of selected psychological quality assessment data, data management and data resource management and other parts based on the data results of extensive data analysis. This study provides some insights into the psychological quality assessment of college students. The strength of association between the variables of psychological quality assessment of college students changes over time, but the overall psychological structure is more stable. This stable psychological structure characteristic is conducive to constructing the policy of constant psychological education in large universities.