Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Environ Geochem Health ; 46(5): 167, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592380

RESUMEN

Microorganisms are crucial elements of terrestrial ecosystems, which play significant roles in improving soil physicochemical properties, providing plant growth nutrients, degrading toxic and harmful chemicals, and biogeochemical cycling. Variations in the types and quantities of root exudates among different plants greatly alter soil physicochemical properties and result in variations in the diversity, structure, and function of soil microorganisms. Not much is understood about the differences of soil fungi and archaea communities for different plant communities in coastal wetlands, and their response mechanisms to environmental changes. In this study, fungal and archaea communities in soils of Suaeda salsa, Phragmites australis, and Spartina alterniflora in the intertidal habitat of coastal wetlands were selected for research. Soil fungi and archaea were analyzed for diversity, community structure, and function using high throughput ITS and 16S rRNA gene sequencing. The study revealed significant differences in fungi and archaea's diversity and community structure in the rhizosphere soil of three plant communities. At the same time, there is no significant difference in the functional groups. SOM, TP, AP, MC, EC and SOM, TN, TP, AP, MC, EC are the primary environmental determinants affecting changes in soil fungal and archaeal communities, respectively. Variations in the diversity, community structure, and ecological functions of fungi and archaea can be used as indicators characterizing the impact of external disturbances on the soil environment, providing a theoretical foundation for the effective utilization of soil microbial resources, thereby achieving the goal of environmental protection and health promotion.


Asunto(s)
Ecosistema , Humedales , Plantas Tolerantes a la Sal , ARN Ribosómico 16S , Archaea/genética , Poaceae , Suelo , Hongos/genética
2.
Environ Sci Technol ; 57(11): 4568-4577, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36848326

RESUMEN

The passivation of zero-valent aluminum (ZVAl) limits its application in environmental remediation. Herein, a ternary composite material Al-Fe-AC is synthesized via a ball-milling treatment on a mixture of Al0, Fe0, and activated carbon (AC) powders. The results show that the as-prepared micronsized Al-Fe-AC powder could achieve highly efficient nitrate removal and a nitrogen (N2)-selectivity of >75%. The mechanism study reveals that, in the initial stage, numerous Al//AC and Fe//AC microgalvanic cells in the Al-Fe-AC material could lead to a local alkaline environment in the vicinity of the AC cathodes. The local alkalinity depassivated the Al0 component and enabled its continuous dissolution in the subsequent second stage of reaction. The functioning of the AC cathode of the Al//AC microgalvanic cell is revealed as the primary reason accounting for the highly selective reduction of nitrate. The investigation on the mass ratio of raw materials manifested that an Al/Fe/AC mass ratio of 1:1:5 or 1:3:5 was preferable. The test in simulated groundwater suggested that the as-prepared Al-Fe-AC powder could be injected into aquifers to achieve a highly selective reduction of nitrate to nitrogen. This study provides a feasible method to develop high-performance ZVAl-based remedial materials that could work in a wider pH range.


Asunto(s)
Nitratos , Contaminantes Químicos del Agua , Nitratos/análisis , Aluminio , Polvos , Hierro , Carbón Orgánico , Nitrógeno , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis
3.
Environ Res ; 228: 115801, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37011791

RESUMEN

Reclaimed water is an effective method for addressing water pollution and shortages. However, its use may contribute to the collapse of receiving water (algal blooms and eutrophication) owing to its unique characteristics. A three-year biomanipulation project was conducted in Beijing to investigate the structural changes, stability, and potential risks to aquatic ecosystems associated with the reuse of reclaimed water in rivers. During the biomanipulation, the proportion of Cyanophyta in the community structure of phytoplankton density in river supplied with reclaimed water decreased, and the community composition shifted from Cyanophyta and Chlorophyta to Chlorophyta and Bacillariophyta. The biomanipulation project increased the number of zoobenthos and fish species and significantly increased fish density. Despite the significant difference in aquatic organisms community structure, diversity index and community stability of aquatic organisms remained stable during the biomanipulation. Our study provides a strategy for minimizing the hazards of reclaimed water through biomanipulation by reconstructing the community structure of reclaimed water, thereby making it safe for large-scale reuse in rivers.


Asunto(s)
Cianobacterias , Ríos , Animales , Agua , Ecosistema , Fitoplancton , China , Eutrofización , Calidad del Agua
4.
J Environ Manage ; 345: 118434, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37385198

RESUMEN

Municipal wastewater treatment often lacks carbon source, while carbon-rich organics in food waste are deficiently utilized. In this study, the food waste fermentation liquid (FWFL) was step-fed into a bench-scale step-feed three-stage anoxic/aerobic system (SFTS-A/O), to investigate its performance in nutrients removal and the response of microbial community as a supplementary carbon source. The results showed that the total nitrogen (TN) removal rate increased by 21.8-109.3% after step-feeding FWFL. However, the biomass of the SFTS-A/O system was increased by 14.6% and 11.9% in the two phases of the experiment, respectively. Proteobacteria was found to be the dominant functional phyla induced by FWFL, and the increase of its abundance attributed to the enrichment of denitrifying bacteria and carbohydrate-metabolizing bacteria was responsible for the biomass increase. Azospira belonged to Proteobacteria phylum was the dominant denitrifying genera when step-fed with FWFL, its abundance was increased from 2.7% in series 1 (S1) to 18.6% in series 2 (S2) and became the keystone species in the microbial networks. Metagenomics analysis revealed that step-feeding FWFL enhanced the abundance of denitrification and carbohydrates-metabolism genes, which were encode mainly by Proteobacteria. This study constitutes a key step towards the application of FWFL as a supplementary carbon source for low C/N municipal wastewater treatment.


Asunto(s)
Microbiota , Eliminación de Residuos , Síndrome de Trombocitopenia Febril Grave , Humanos , Aguas Residuales , Fermentación , Alimentos , Eliminación de Residuos Líquidos/métodos , Carbono , Aguas del Alcantarillado , Reactores Biológicos , Nitrógeno , Desnitrificación
5.
Water Sci Technol ; 76(11-12): 3086-3093, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29210694

RESUMEN

This paper investigates the effect of phosphorus on nitrogen migration and transformation during the sewage purification processes in deep subsurface wastewater infiltration systems. Good performance was achieved with a hydraulic loading rate of 0.1 m3/m2·d, indicating that the effluent water quality could meet the primary grade A values as put forth by the 'Cities Sewage Treatment Plant Pollutant Discharge Standard' (GB18918-2002). In addition, the results of three inflow total phosphorus (TP) concentrations (5 mg L-1, 15 mg L-1, and 30 mg L-1) indicated that high-levels of phosphorus were more advantageous in regards to improving the activity of denitrifying bacteria in soil and strengthening the effect of nitrogen removal, suggesting that the effluent total nitrogen (TN) concentration could meet the primary grade A standard (TN ≤ 15 mg L-1). It was further observed that soil depth was less crucial when inflow TP concentrations were higher. Therefore, the results indicated that inflow phosphorus concentrations could greatly influence nitrogen migration and transformation in deep subsurface wastewater infiltration systems.


Asunto(s)
Agua Subterránea/química , Nitrógeno/química , Fósforo/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Ciudades , Aguas del Alcantarillado/microbiología , Suelo , Purificación del Agua/métodos
6.
J Chem Technol Biotechnol ; 91(4): 938-947, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30473593

RESUMEN

BACKGROUND: Electrolysis with an iron anode is a novel way to provide ferrous activators for chemical oxidation. The objective of this study is to evaluate the performance of peroxymonosulfate (PMS) for chlorophenol destruction when compared with H2O2 and persulfate (PS), and to see whether the electrolysis mode facilitates the buildup of conditions that favor the activation of PMS and removal of chlorophenols. RESULTS: Ferrous species can effectively activate the PMS over a wide pH range. In comparison with H2O2 and PS, PMS is less sensitive to the solution's pH and possesses stronger oxidation capability at alkaline pHs. The optimal molar ratio of PMS to Fe(II) activator is 1:1 for the destruction of 2,4-dichlorophenol (2,4-DCP). The column experiments show that an acidic zone developed downstream from the anode is favorable to maintain ferrous ions and subsequent activation of PMS. The reactivity of the PMS can be manipulated by varying the electrical currents, and the process demonstrates effectiveness for treating organic contaminants. 2,4-DCP contaminated groundwater shows decreased biotoxicity after the chemical oxidation process without considering the residual PMS. CONCLUSIONS: Iron electrolysis-assisted peroxymonosulfate chemical oxidation can effectively treat the 2,4-dichlorophenol and mixtures of organic contaminants. This process can be engineered as an in situ chemical oxidation method for groundwater remediation.

7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(8): 2212-6, 2015 Aug.
Artículo en Zh | MEDLINE | ID: mdl-26672296

RESUMEN

Using three-dimensional fluorescence technology, we studied fluorescent characteristics of two polluted rivers by a surface flow+vertical flow combined constructed wetlands of dissolving organic matter. The results showed that (1) the main sources of water-soluble humic organic matter in constructed wetland was biological metabolic input instead of terrigenous input; (2) in the later section of the surface flow constructed wetland, part of proteinoid substance changed into fulvic acid-like substance, which showed that the composition of dissolved organic matter and material structure tended to be stable after surface flow combined constructed wetland treatment; (3) it was of great significance that surface flow constructed wetland in structure transformation of water soluble organic matter, which could significantly improve the stability of water soluble organic matter. Surface flow+vertical flow combined constructed wetland process of dissolved organic matter had a good removal effect.


Asunto(s)
Monitoreo del Ambiente , Compuestos Orgánicos/análisis , Humedales , Espectrometría de Fluorescencia
8.
J Environ Sci (China) ; 26(10): 1977-84, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25288540

RESUMEN

Arsenic (As) fractions in the sediments of seven lakes from East Plain Ecoregion and six lakes from Yungui Plateau Ecoregion, China, were investigated. Results indicated that the total As concentrations in sediment samples of lakes of the East Plain Lake Ecoregion are higher than those of Yungui Plateau Lake Ecoregion. Residual As is the main fraction in sediment samples of lakes from both ecoregions, followed by reducible As and soluble or oxidizable As. The total As is correlated to oxidizable As and residual As in sediment samples from both lake ecoregions. As distribution in sediment samples of lakes of the East Plain Ecoregion appears to be affected by human activity, while the As origin mainly comes from natural sources in sediment samples of lakes in the Yungui Plateau Ecoregion. The potential ecological risk index and geoaccumulation index values suggest "low to moderate" risk degree and "unpolluted to moderately polluted" for As in the studied lake sediments.


Asunto(s)
Ecosistema , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , China , Lagos , Control de Calidad
9.
Sci Total Environ ; 947: 174565, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986715

RESUMEN

Long-term waste accumulation (LTWA) in soil not only alters its physical and chemical properties but also affects heavy metals and microorganisms in polluted soil through the dissolved organic matter (DOM) it produces. However, research on the impact of DOM from LTWA on heavy metals and microorganisms in polluted soil is limited, which has resulted in an incomplete understanding of the mechanisms involved in LTWA soils remediation. This study focuses on the DOM generated by waste accumulation and analyses the physicochemical properties, microbial community structure, and vertical distribution of heavy metals in four types of LTWA soils at different depths (0-100 cm). A causal analysis is conducted using structural equation modelling. The results indicate that due to the retention effect of the soil and microorganisms, heavy metal pollution is concentrated on the soil surface layer (>30 cm). With increasing depth, there is a decrease in heavy metal concentration and an increase in microbial diversity and abundance. DOM plays a significant role in regulating the concentration of soil heavy metals and the diversity and abundance of microorganisms. The DOM from different soils gradually transforms into substances dominated by tyrosine, tryptophan, and fulvic acid, which sustain the normal life activities and gene expression of microorganisms. Bacteria such as Pseudarthrobacter, Desulfurivibrio, Thiobacillus, and Sulfurimonas, which are involved in energy transformation, along with genes such as water channel protein and YDIF, which enhance heavy metal metabolism, ensure that microbial communities can maintain basic life processes in polluted environments and gradually select for dominant species that are adapted to heavy metal pollution. These novel discoveries illuminate the potential for modulating the composition of DOM to amplify microbial activity, while concurrently offering insights into the migration patterns of various long-term exogenous pollutants. This foundational knowledge provides a foundation for the development of efficacious remediation strategies.


Asunto(s)
Metales Pesados , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Metales Pesados/análisis , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Suelo/química , Bacterias/metabolismo , Microbiota
10.
RSC Adv ; 14(31): 22470-22479, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39015665

RESUMEN

In this study, a laboratory-scale hybrid biofilm reactor (HBR) was constructed to treat food wastewater (FWW) before it is discharged into the sewer. The chemical oxygen demand (COD) of 29 860 mg L-1 in FWW was degraded to 200-350 mg L-1 using the HBR under the operating parameters of COD load 1.68 kg m-3 d-1, hydraulic retention time (HRT) of 426.63 h, dissolved oxygen (DO) of 8-9 mg L-1, and temperature of 22-23 °C. The biomass of biofilm on the surface of filler was 2.64 g L-1 for column A and 0.91 g L-1 for column O. Microbial analysis revealed richer and more diverse microorganisms in filler biofilms compared to those in suspended sludge. The hybrid filler was conducive to the development of functional microbial species, including phyla Firmicutes, Actinobacteriota, and Chloroflexi, and genus level norank_f_JG30-KF-CM45, which will improve FWW treatment efficiency. Moreover, the microorganisms on the filler biofilm had more connections and relationships than those in the suspended sludge. The combination of an up-flow anaerobic sludge bed (UASB) and HBR was demonstrated to be an economical strategy for practical applications as a shorter HRT of 118.34 h could be obtained. Overall, this study provides reliable data and a theoretical basis for the application of HBR and FWW treatments.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(8): 2123-7, 2013 Aug.
Artículo en Zh | MEDLINE | ID: mdl-24159860

RESUMEN

In the present study, the soil column with radius of 30 cm and height of 200 cm was used to simulate a subsurface wastewater infiltration system. Under the hydraulic loading of 4 cm x d(-1), composition and transformation of dissolved organic matter (DOM) from different depths were analyzed in a subsurface wastewater infiltration system for treatment of septic tank effluent using three-dimensional excitation emission matrix fluorescence spectroscopy (3D-EEM) with regional integration analysis (FRI). The results indicate that: (1) from different depth, the composition of DOM was also different; influent with the depth of 0.5 m was mainly composed of protein-like substances, and that at other depths was mainly composed of humic- and fulvic-like substances. (2) DOM stability gradually increased and part of the nonbiodegradable organic matter can be removed during organic pollutants degradation process. (3) Not only the organic pollutants concentration was reduced effectively, but also the stability of the DOM improved in subsurface wastewater infiltration system.

12.
Int J Biol Macromol ; 253(Pt 1): 126661, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37660855

RESUMEN

Herein, a new porous chitosan-phosphorylated chitosan-amidoxime macroporous resin composite (PCAR) was designed and synthesized for the rapid and selective extraction of uranium resources from aqueous solution. This study showed that PCAR exhibited excellent adsorption toward uranium in a pH range of 5-9. The dynamic adsorption process aligned with the quasi-second-order kinetic model and corresponded to the chemical adsorption process. The maximum adsorption capacity was 561.28 mg·g-1 at pH 6 and 308 K. Mechanism analysis showed that the synergistic effect of the amidoxime group (-(NH2)C=N-OH), PO, and -NH2 on the PCAR surface improved the uranium adsorption performance. The differential charge density indicated that the amidoxime and phosphate groups provide lone-pair electrons for the adsorption of UO22+ and their synergistic effect improves the UO22+ adsorption performance of PCAR. The uranium distribution coefficients of PCAR and CAR are 4.6 and 2.4 times those of vanadium, respectively. These results indicate that phosphorylation can ameliorate the disadvantage of competitive vanadium adsorption of the amidoxime adsorbent. In addition, PCAR exhibits good reusability and stable adsorption capacity after five adsorption-desorption cycles. Hence, PCAR has excellent potential for uranium extraction from aqueous solution.


Asunto(s)
Quitosano , Uranio , Uranio/análisis , Porosidad , Vanadio , Concentración de Iones de Hidrógeno , Resinas Compuestas , Adsorción , Agua
13.
Sci Total Environ ; 901: 165943, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37541520

RESUMEN

The purification performance of aquaculture wastewater and the risk of antibiotic resistance genes (ARGs) dissemination in wetlands dominated by macrophytes remain unclear. Here, the purification effects of different macrophytes and biofilm systems on real aquaculture wastewater were investigated, as well as the distribution and abundance of ARGs. Compared to the submerged macrophytes, artificial macrophytes exhibited higher removal rates of TOC (58.80 ± 5.04 %), TN (74.50 ± 2.50 %), and TP (77.33 ± 11.66 %), and achieved approximately 79.92 % removal of accumulated trace antibiotics in the surrounding water. Additionally, the biofilm microbial communities on the surface of artificial macrophytes exhibited higher microbial diversity with fewer antibiotic-resistant bacteria (ARB) enrichment from the surrounding water. The absolute abundance of ARGs (sul1, sul2, and intI1) in the mature biofilm to be one to two orders of magnitude higher than that in the water. Although biofilms could decrease ARGs in the surrounding water by enriching ARB, the intricate network structure of biofilms further facilitated the proliferation of ARB and the dissemination of ARGs in water. Network analysis suggested that Proteobacteria and Firmicutes phyla were dominant and potential carriers of ARGs, contributing 69.00 % and 16.70 %, respectively. Our findings highlight that macrophytes and biofilm systems have great performance on aquaculture wastewater purification, but with high risk of ARGs.


Asunto(s)
Genes Bacterianos , Aguas Residuales , Bacterias/genética , Antagonistas de Receptores de Angiotensina/farmacología , Antibacterianos/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Farmacorresistencia Microbiana/genética , Biopelículas , Acuicultura , Agua
14.
Int J Biol Macromol ; 238: 124074, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36934816

RESUMEN

A novel chitosan-based porous composite adsorbent with multifunctional groups, such as phosphoric acid, amidoxime, and quaternary ammonium groups, was prepared to improve the adsorption rate and competitive uranium­vanadium adsorption of amidoxime group adsorbents. The maximum uranium adsorption capacity of PACNC was 962.226 mg g-1 at 308 K and pH = 7. The maximum adsorption rate constant of PACNC for uranium was 2.83E-2 g mg-1 min-1, which is 2.38 times that of ACNC (1.19E-2 g mg-1 min-1). Moreover, the adsorption equilibrium time was shortened from 300 (ACNC) to 50 (PACNC) min. In simulated and real seawater, the Kd and adsorption capacity of PACNC for uranium were approximately 8 and 6.62 times those for vanadium, respectively. These results suggest that phosphorylation significantly improved the competitive adsorption of uranium­vanadium and uranium adsorption rate. PACNC also exhibited good recycling performance and maintained stable adsorption capacity after five cycles. DFT calculations were used to analyze and calculate the possible co-complex structure of PACNC and uranium. The binding structure of phosphate and amidoxime is the most stable, and its synergistic effect effectively improves the competitive adsorption of uranium-vanadium of amidoxime. All the results demonstrated that PACNC has substantial application potential for uranium extraction from seawater.


Asunto(s)
Quitosano , Uranio , Uranio/química , Quitosano/química , Adsorción , Fosforilación , Vanadio , Agua de Mar/química
15.
Chemosphere ; 331: 138832, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37150460

RESUMEN

Discovering the complexity and improving the stability of microbial networks in urban rivers affected by combined sewer overflows (CSOs) is essential for restoring the ecological functions of urban rivers, especially to improve their ability to resist CSO impacts. In this study, the effects of sediment remediation on the complexity and stability of microbial networks was investigated. The results revealed that the restored microbial community structure using different approaches in the river sediments differed significantly, and random matrix theory showed that sediment remediation significantly affected microbial networks and topological properties; the average path distance, average clustering coefficient, connectedness, and other network topological properties positively correlated with remediation time and weakened the small-world characteristics of the original microbial networks. Compared with other sediment remediation methods, regulating low dissolved oxygen (DO) shifts the microbial network module hubs from Actinobacteria and Bacteroidetes to Chloroflexi and Proteobacteria. This decreases the positive association of networks by 17%-18%, which intensifies the competitiveness among microorganisms, further weakening the influence and transmission of external pressure across the entire microbial network. Compared with that of the original sediment, the vulnerability of the restored network was reduced by more than 36%, while the compositional stability was improved by more than 12%, with reduced fluctuation in natural connectivity. This microbial network succession substantially increased the number of key enzyme-producing genes involved in nitrogen and sulfur metabolism, enhancing nitrification, denitrification, and assimilatory sulfate reduction, thereby increasing the removal rates of ammonia, nitrate, and acid volatile sulfide by 43.42%, 250.68% and 2.66%, respectively. This study comprehensively analyzed the succession patterns of microbial networks in urban rivers affected by CSOs before and after sediment remediation, which may provide a reference for reducing the impact of CSO pollution on urban rivers in the subsequent stages.


Asunto(s)
Contaminantes Ambientales , Ríos , Ríos/microbiología , Nitrógeno , Monitoreo del Ambiente , Azufre , Sedimentos Geológicos/química
16.
Sheng Wu Gong Cheng Xue Bao ; 38(1): 5-13, 2022 Jan 25.
Artículo en Zh | MEDLINE | ID: mdl-35142114

RESUMEN

The development of high-throughput sequencing techniques enabled a deeper and more comprehensive understanding of environmental microbiology. Specifically, the third-generation sequencing techniques represented by nanopore sequencing have greatly promoted the development of environmental microbiology research due to its advantages such as long sequencing reads, fast sequencing speed, real-time monitoring of sequencing data, and convenient machine carrying, as well as no GC bias and no PCR amplification requirement. This review briefly summarized the technical principle and characteristics of nanopore sequencing, followed by discussing the application of nanopore sequencing techniques in the amplicon sequencing, metagenome sequencing and whole genome sequencing of environmental microorganisms. The advantages and challenges of nanopore sequencing in the application of environmental microbiology research were also analyzed.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Microbiología Ambiental , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma
17.
Environ Pollut ; 302: 119065, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35227842

RESUMEN

The emergence of resistance genes is a global phenomenon that poses a significant threat to both animals and humans. Lakes are important reservoirs of genes that confer resistant to antibiotics and metals. In this study, we investigated the distribution and diversity of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) in the sediment of Daihai Lake using high-throughput sequencing and metagenomic analysis. The results indicated that all sampling sites had similar bacterial community structures, with Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes being the most abundant. A total of 16 ARG types containing 111 ARG subtypes were deposited in the sediment. Among the resistance genes to bacitracin, multidrug, macrolide-lincosamide-streptogramin (MLS), tetracycline, beta-lactam, and sulfonamide were the dominant ARG types, accounting for 89.9-94.3% of the total ARGs. Additionally, 15 MRG types consisting of 146 MRG subtypes were identified. In all samples, MRGs of the same type presented resistance to Pb, Ni, Hg, W, Zn, Ag, Cr, Fe, As, Cu, and multimetals. Overall, the distribution and diversity of antibiotic and metal resistance genes showed no significant differences in the samples. Plasmids (91.03-91.82%) were the most dominant mobile genetic elements in the sediments of Daihai Lake. Network analysis indicated that the target ARGs and MRGs were significantly positively correlated with the microorganisms. Potential hosts for various ARGs and MRGs include Proteobacteria, Euryarchaeota, Actinobacteria, Chloroflexi, and Bacteroidetes.


Asunto(s)
Lagos , Microbiota , Animales , Antibacterianos , China , Genes Bacterianos , Lagos/microbiología , Metagenoma , Metagenómica/métodos , Microbiota/genética
18.
Environ Pollut ; 309: 119781, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35841988

RESUMEN

Cyanobacterial blooms are important environmental problems in aquatic ecosystems. Researchers have found that cyanobacterial blooms cannot be completely prevented by controlling and/or eliminating pollutants (nutrients). Thus, more in-depth basic research on the mechanism of cyanobacterial blooms is urgently needed. Cyanobacteria, being primordial microorganisms, provide habitats and have various forms of interactions (reciprocity and competition) with microorganisms, thus having a significant impact on themselves. However, little is known about how environmental conditions and microbial communities in both water and sediment jointly affect cyanobacterial blooms or about the co-occurrence patterns and interactions of microbial communities. We investigated changes in environmental factors and microbial communities in water and sediment during different cyanobacterial blooms and revealed their interacting effects on cyanobacteria. Cyanobacteria had greater competitive and growth advantages than other microorganisms and had antagonistic and aggressive effects on them when resources (such as nutrients) were abundant. Furthermore, microbial networks from cyanobacterial degradation periods may be more complex and stable than those from bloom periods, with more positive links among the microbial networks, suggesting that microbial community structures strengthen interconnections with each other to degrade cyanobacteria. In addition, we found that sediment-enriched cyanobacteria play a key role in cyanobacterial blooms, and sediment microorganisms promote the nutrient release, further promoting cyanobacterial blooms in the water bodies. The study contributes to further our understanding of the mechanisms for cyanobacterial blooms and microbial community structural composition, co-occurrence patterns, and responses to cyanobacteria. These results can contribute to future management strategies for controlling cyanobacterial blooms in freshwater ecosystems.


Asunto(s)
Cianobacterias , Microbiota , Eutrofización , Agua Dulce/microbiología , Lagos , Agua
19.
Sci Total Environ ; 848: 157737, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35926627

RESUMEN

A combined process of anaerobic digestion (UASB), shortcut nitrification-denitrification (A/O), and semi-anoxic co-metabolism (operated by an up-flow semi-anoxic sludge bed; USSB) was constructed for the treatment of old landfill leachate (>10 years). The performance and mechanism of refractory organics degradation by the combined process (UASB-A/O-USSB) were investigated. The results showed that the semi-anoxic co-metabolism contributes 57 % of the totally degraded refractory organics. Specific microorganisms and their corresponding metabolic functions drive the degradation of refractory organics in each unit of the UASB-A/O-USSB process. In detail, organics with simple molecular structures were preferentially degraded by anaerobic digestion and shortcut denitrification, whereas those with complex structures were subsequently degraded in the oxic tanks and USSB reactor by shortcut nitrification and semi-anoxic co-metabolism. The structural equation model showed that the combined process of shortcut nitrification and semi-anoxic co-metabolism had a better effect on the degradation of recalcitrant organics than the single process. These findings provide information on how refractory organics are metabolically degraded in a combined process.


Asunto(s)
Contaminantes Químicos del Agua , Reactores Biológicos , Desnitrificación , Nitrógeno , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/metabolismo
20.
Sci Total Environ ; 782: 146903, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33848851

RESUMEN

Combined sewer overflows (CSOs) are a dominant contributor to urban river pollution. Therefore, reducing the environmental impacts of CSOs and improving the self-purification capacity of water bodies are essential. In this study, the side-stream supersaturation (SSS) oxygenation was applied to restore microbial function of rivers which are affected by CSOs to improve the self-purification capacity. The results showed that apart from the dissolved organic matter inputs from CSO event, the sediment had become an important contributor to pollution in the studied river. After the long-term (46 d) implementation of SSS oxygenation, dissolved oxygen and the oxidation-reduction potential of the river water increased by 98% and 238%, respectively, compared to emergency control measures implemented following individual CSO events. The NH3-N concentrations and the chemical oxygen demand also decreased by 20% and 45%, respectively. In addition, the occurrence of microbial functions related to information storage and processing, and cellular process and signaling, increased by 1.87% and 0.82% in response to SSS oxygenation, respectively, and the Shannon index of the sediment microbial community increased by more than 15%. The frequencies of genes related to nitrification and sulfur oxidation also increased by 20-450% and >50%, respectively. This research provides new insights into the ecological restoration of rivers affected by CSOs.


Asunto(s)
Microbiota , Ríos , Monitoreo del Ambiente , Agua Dulce , Aguas del Alcantarillado/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda