Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 7.263
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Cell ; 185(26): 4954-4970.e20, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36493774

RESUMEN

Nuclear pore complexes (NPCs) are channels for nucleocytoplasmic transport of proteins and RNAs. However, it remains unclear whether composition, structure, and permeability of NPCs dynamically change during the cleavage period of vertebrate embryos and affect embryonic development. Here, we report that the comprehensive NPC maturity (CNM) controls the onset of zygotic genome activation (ZGA) during zebrafish early embryogenesis. We show that more nucleoporin proteins are recruited to and assembled into NPCs with development, resulting in progressive increase of NPCs in size and complexity. Maternal transcription factors (TFs) transport into nuclei more efficiently with increasing CNM. Deficiency or dysfunction of Nup133 or Ahctf1/Elys impairs NPC assembly, maternal TFs nuclear transport, and ZGA onset, while nup133 overexpression promotes these processes. Therefore, CNM may act as a molecular timer for ZGA by controlling nuclear transport of maternal TFs that reach nuclear concentration thresholds at a given time to initiate ZGA.


Asunto(s)
Poro Nuclear , Pez Cebra , Animales , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo , Cigoto/metabolismo , Genoma
2.
Cell ; 174(4): 818-830.e11, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30057113

RESUMEN

Rtt109 is a unique histone acetyltransferase acetylating histone H3 lysine 56 (H3K56), a modification critical for DNA replication-coupled nucleosome assembly and genome stability. In cells, histone chaperone Asf1 is essential for H3K56 acetylation, yet the mechanisms for H3K56 specificity and Asf1 requirement remain unknown. We have determined the crystal structure of the Rtt109-Asf1-H3-H4 complex and found that unwinding of histone H3 αN, where K56 is normally located, and stabilization of the very C-terminal ß strand of histone H4 by Asf1 are prerequisites for H3K56 acetylation. Unexpectedly, an interaction between Rtt109 and the central helix of histone H3 is also required. The observed multiprotein, multisite substrate recognition mechanism among histone modification enzymes provides mechanistic understandings of Rtt109 and Asf1 in H3K56 acetylation, as well as valuable insights into substrate recognition by histone modification enzymes in general.


Asunto(s)
Aspergillus fumigatus/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/química , Lisina/metabolismo , Chaperonas Moleculares/metabolismo , Acetilación , Secuencia de Aminoácidos , Histona Acetiltransferasas/química , Histonas/metabolismo , Lisina/química , Chaperonas Moleculares/química , Conformación Proteica , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia , Especificidad por Sustrato
3.
Cell ; 174(1): 72-87.e32, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29861175

RESUMEN

Recent reports indicate that hypoxia influences the circadian clock through the transcriptional activities of hypoxia-inducible factors (HIFs) at clock genes. Unexpectedly, we uncover a profound disruption of the circadian clock and diurnal transcriptome when hypoxic cells are permitted to acidify to recapitulate the tumor microenvironment. Buffering against acidification or inhibiting lactic acid production fully rescues circadian oscillation. Acidification of several human and murine cell lines, as well as primary murine T cells, suppresses mechanistic target of rapamycin complex 1 (mTORC1) signaling, a key regulator of translation in response to metabolic status. We find that acid drives peripheral redistribution of normally perinuclear lysosomes away from perinuclear RHEB, thereby inhibiting the activity of lysosome-bound mTOR. Restoring mTORC1 signaling and the translation it governs rescues clock oscillation. Our findings thus reveal a model in which acid produced during the cellular metabolic response to hypoxia suppresses the circadian clock through diminished translation of clock constituents.


Asunto(s)
Hipoxia de la Célula , Relojes Circadianos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Aminoácidos Dicarboxílicos/farmacología , Animales , Proteínas CLOCK/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Relojes Circadianos/efectos de los fármacos , Medios de Cultivo/química , Factores Eucarióticos de Iniciación , Concentración de Iones de Hidrógeno , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/citología , Linfocitos T/metabolismo , Transcriptoma/efectos de los fármacos , Proteína 2 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
4.
Immunity ; 56(5): 1013-1026.e6, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36944334

RESUMEN

Sepsis is a dysregulated inflammatory consequence of systemic infection. As a result, excessive platelet activation leads to thrombosis and coagulopathy, but we currently lack sufficient understanding of these processes. Here, using the cecal ligation and puncture (CLP) model of sepsis, we observed septic thrombosis and neutrophil extracellular trap formation (NETosis) within the mouse vasculature by intravital microscopy. STING activation in platelets was a critical driver of sepsis-induced pathology. Platelet-specific STING deficiency suppressed platelet activation and granule secretion, which alleviated sepsis-induced intravascular thrombosis and NETosis in mice. Mechanistically, sepsis-derived cGAMP promoted the binding of STING to STXBP2, the assembly of SNARE complex, granule secretion, and subsequent septic thrombosis, which probably depended on the palmitoylation of STING. We generated a peptide, C-ST5, to block STING binding to STXBP2. Septic mice treated with C-ST5 showed reduced thrombosis. Overall, platelet activation via STING reveals a potential strategy for limiting life-threatening sepsis-mediated coagulopathy.


Asunto(s)
Trampas Extracelulares , Sepsis , Trombosis , Animales , Ratones , Plaquetas/metabolismo , Trampas Extracelulares/metabolismo , Ratones Endogámicos C57BL , Proteínas Munc18/metabolismo , Activación Plaquetaria , Sepsis/metabolismo , Trombosis/metabolismo
5.
Genes Dev ; 36(7-8): 408-413, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35393344

RESUMEN

Chaperones influence histone conformation and intermolecular interaction in multiprotein complexes, and the structures obtained with full-length histones often provide more accurate and comprehensive views. Here, our structure of the Hat1-Hat2 acetyltransferase complex bound to Asf1-H3-H4 shows that the core domains of H3 and H4 are involved in binding Hat1 and Hat2, and the N-terminal tail of H3 makes extensive interaction with Hat2. These findings expand the knowledge about histone-protein interaction and implicate a function of Hat2/RbAp46/48, which is a versatile histone chaperone found in many chromatin-associated complexes, in the passing of histones between chaperones.


Asunto(s)
Histona Acetiltransferasas , Histonas , Acetilación , Proteínas de Ciclo Celular/metabolismo , Cromatina , Histona Acetiltransferasas/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/genética
6.
Nature ; 615(7952): 526-534, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890225

RESUMEN

The nucleolus is the most prominent membraneless condensate in the nucleus. It comprises hundreds of proteins with distinct roles in the rapid transcription of ribosomal RNA (rRNA) and efficient processing within units comprising a fibrillar centre and a dense fibrillar component and ribosome assembly in a granular component1. The precise localization of most nucleolar proteins and whether their specific localization contributes to the radial flux of pre-rRNA processing have remained unknown owing to insufficient resolution in imaging studies2-5. Therefore, how these nucleolar proteins are functionally coordinated with stepwise pre-rRNA processing requires further investigation. Here we screened 200 candidate nucleolar proteins using high-resolution live-cell microscopy and identified 12 proteins that are enriched towards the periphery of the dense fibrillar component (PDFC). Among these proteins, unhealthy ribosome biogenesis 1 (URB1) is a static, nucleolar protein that ensures 3' end pre-rRNA anchoring and folding for U8 small nucleolar RNA recognition and the subsequent removal of the 3' external transcribed spacer (ETS) at the dense fibrillar component-PDFC boundary. URB1 depletion leads to a disrupted PDFC, uncontrolled pre-rRNA movement, altered pre-rRNA conformation and retention of the 3' ETS. These aberrant 3' ETS-attached pre-rRNA intermediates activate exosome-dependent nucleolar surveillance, resulting in decreased 28S rRNA production, head malformations in zebrafish and delayed embryonic development in mice. This study provides insight into functional sub-nucleolar organization and identifies a physiologically essential step in rRNA maturation that requires the static protein URB1 in the phase-separated nucleolus.


Asunto(s)
Nucléolo Celular , Exosomas , Precursores del ARN , Procesamiento Postranscripcional del ARN , ARN Ribosómico , Pez Cebra , Animales , Ratones , Nucléolo Celular/metabolismo , Desarrollo Embrionario , Exosomas/metabolismo , Cabeza/anomalías , Microscopía , Proteínas Nucleares/metabolismo , Precursores del ARN/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Ribosómico 28S/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
7.
Nature ; 621(7980): 840-848, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37674084

RESUMEN

In both cancer and infections, diseased cells are presented to human Vγ9Vδ2 T cells through an 'inside out' signalling process whereby structurally diverse phosphoantigen (pAg) molecules are sensed by the intracellular domain of butyrophilin BTN3A11-4. Here we show how-in both humans and alpaca-multiple pAgs function as 'molecular glues' to promote heteromeric association between the intracellular domains of BTN3A1 and the structurally similar butyrophilin BTN2A1. X-ray crystallography studies visualized that engagement of BTN3A1 with pAgs forms a composite interface for direct binding to BTN2A1, with various pAg molecules each positioned at the centre of the interface and gluing the butyrophilins with distinct affinities. Our structural insights guided mutagenesis experiments that led to disruption of the intracellular BTN3A1-BTN2A1 association, abolishing pAg-mediated Vγ9Vδ2 T cell activation. Analyses using structure-based molecular-dynamics simulations, 19F-NMR investigations, chimeric receptor engineering and direct measurement of intercellular binding force revealed how pAg-mediated BTN2A1 association drives BTN3A1 intracellular fluctuations outwards in a thermodynamically favourable manner, thereby enabling BTN3A1 to push off from the BTN2A1 ectodomain to initiate T cell receptor-mediated γδ T cell activation. Practically, we harnessed the molecular-glue model for immunotherapeutics design, demonstrating chemical principles for developing both small-molecule activators and inhibitors of human γδ T cell function.


Asunto(s)
Butirofilinas , Activación de Linfocitos , Fosfoproteínas , Receptores de Antígenos de Linfocitos T gamma-delta , Linfocitos T , Animales , Humanos , Antígenos CD/inmunología , Antígenos CD/metabolismo , Butirofilinas/inmunología , Butirofilinas/metabolismo , Camélidos del Nuevo Mundo/inmunología , Simulación de Dinámica Molecular , Fosfoproteínas/inmunología , Fosfoproteínas/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Cristalografía por Rayos X , Resonancia Magnética Nuclear Biomolecular , Termodinámica
8.
Nature ; 608(7923): 626-631, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896743

RESUMEN

Emissions of the critical ozone-depleting and greenhouse gas nitrous oxide (N2O) from soils and industrial processes have increased considerably over the last decades1-3. As the final step of bacterial denitrification, N2O is reduced to chemically inert N2 (refs. 1,4) in a reaction that is catalysed by the copper-dependent nitrous oxide reductase (N2OR) (ref. 5). The assembly of its unique [4Cu:2S] active site cluster CuZ requires both the ATP-binding-cassette (ABC) complex NosDFY and the membrane-anchored copper chaperone NosL (refs. 4,6). Here we report cryo-electron microscopy structures of Pseudomonas stutzeri NosDFY and its complexes with NosL and N2OR, respectively. We find that the periplasmic NosD protein contains a binding site for a Cu+ ion and interacts specifically with NosL in its nucleotide-free state, whereas its binding to N2OR requires a conformational change that is triggered by ATP binding. Mutually exclusive structures of NosDFY in complex with NosL and with N2OR reveal a sequential metal-trafficking and assembly pathway for a highly complex copper site. Within this pathway, NosDFY acts as a mechanical energy transducer rather than as a transporter. It links ATP hydrolysis in the cytoplasm to a conformational transition of the NosD subunit in the periplasm, which is required for NosDFY to switch its interaction partner so that copper ions are handed over from the chaperone NosL to the enzyme N2OR.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Óxido Nitroso , Oxidorreductasas , Pseudomonas stutzeri , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Cobre/química , Cobre/metabolismo , Citoplasma/enzimología , Chaperonas Moleculares/metabolismo , Óxido Nitroso/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Oxidorreductasas/ultraestructura , Periplasma/enzimología , Unión Proteica , Conformación Proteica , Pseudomonas stutzeri/citología , Pseudomonas stutzeri/enzimología
9.
Nature ; 601(7892): 245-251, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34912119

RESUMEN

Pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) in plants enable them to respond to pathogens by activating the production of defence metabolites that orchestrate immune responses1-4. How the production of defence metabolites is promoted by immune receptors and coordinated with broad-spectrum resistance remains elusive. Here we identify the deubiquitinase PICI1 as an immunity hub for PTI and ETI in rice (Oryza sativa). PICI1 deubiquitinates and stabilizes methionine synthetases to activate methionine-mediated immunity principally through biosynthesis of the phytohormone ethylene. PICI1 is targeted for degradation by blast fungal effectors, including AvrPi9, to dampen PTI. Nucleotide-binding domain, leucine-rich-repeat-containing receptors (NLRs) in the plant immune system, such as PigmR, protect PICI1 from effector-mediated degradation to reboot the methionine-ethylene cascade. Natural variation in the PICI1 gene contributes to divergence in basal blast resistance between the rice subspecies indica and japonica. Thus, NLRs govern an arms race with effectors, using a competitive mode that hinges on a critical defence metabolic pathway to synchronize PTI with ETI and ensure broad-spectrum resistance.


Asunto(s)
Oryza , Enfermedades de las Plantas , Metionina , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Plantas , Transducción de Señal/genética
10.
Plant Cell ; 36(2): 383-403, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37847118

RESUMEN

The Casparian strip (CS) is a ring-like lignin structure deposited between endodermal cells that forms an apoplastic barrier to control the selective uptake of nutrients in vascular plants. However, the molecular mechanism of CS formation in rice (Oryza sativa), which possesses one CS each in the endodermis and exodermis, is relatively unknown. Here, we functionally characterized CS INTEGRITY FACTOR1 (OsCIF1a, OsCIF1b), OsCIF2, and SCHENGEN3 (OsSGN3a, OsSGN3b) in rice. OsCIF1s and OsCIF2 were mainly expressed in the stele, while OsSGN3s localized around the CS at the endodermis. Knockout of all three OsCIFs or both OsSGN3s resulted in a discontinuous CS and a dramatic reduction in compensatory (less localized) lignification and suberization at the endodermis. By contrast, ectopic overexpression of OsCIF1 or OsCIF2 induced CS formation as well as overlignification and oversuberization at single or double cortical cell layers adjacent to the endodermis. Ectopic co-overexpression of OsCIF1 and SHORTROOT1 (OsSHR1) induced the formation of more CS-like structures at multiple cortical cell layers. Transcriptome analysis identified 112 downstream genes modulated by the OsCIF1/2-OsSGN3 signaling pathway, which is involved in CS formation and activation of the compensatory machinery in native endodermis and nonnative endodermis-like cell layers. Our results provide important insights into the molecular mechanism of CIF-mediated CS formation at the root endodermal and nonendodermal cell layers.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/genética , Oryza/genética , Raíces de Plantas/metabolismo , Pared Celular/metabolismo , Péptidos/metabolismo , Transducción de Señal/genética
11.
Plant Cell ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963884

RESUMEN

As an essential intrinsic component of photosystem II (PSII) in all oxygenic photosynthetic organisms, heme-bridged heterodimer cytochrome b559 (Cyt b559) plays critical roles in protection and assembly of PSII. However, the underlying mechanisms of Cyt b559 assembly are largely unclear. Here, we characterized the Arabidopsis (Arabidopsis thaliana) rph1 (resistance to Phytophthora1) mutant, which was previously shown to be susceptible to the oomycete pathogen Phytophthora brassicae. Loss of RPH1 leads to a drastic reduction in PSII accumulation, which can be primarily attributed to the defective formation of Cyt b559. Spectroscopic analyses showed that the heme level in PSII supercomplexes isolated from rph1 is significantly reduced, suggesting that RPH1 facilitates proper heme assembly in Cyt b559. Due to the loss of RPH1-mediated processes, a covalently bound PsbE-PsbF heterodimer is formed during the biogenesis of PSII. In addition, rph1 is highly photosensitive and accumulates elevated levels of ROS under photoinhibitory light conditions. RPH1 is a conserved intrinsic thylakoid protein present in green algae and terrestrial plants, but absent in Synechocystis, and it directly interacts with the subunits of Cyt b559. Thus, our data demonstrate that RPH1 represents a chloroplast acquisition specifically promoting the efficient assembly of Cyt b559, probably by mediating proper heme insertion into the apo-Cyt b559 during the initial phase of PSII biogenesis.

12.
Mol Cell ; 74(5): 996-1009.e7, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-30975460

RESUMEN

Nucleotide-binding site leucine-rich repeat (NLR) receptors perceive pathogen effectors and trigger plant immunity. However, the mechanisms underlying NLR-triggered defense responses remain obscure. The recently discovered Pigm locus in rice encodes a cluster of NLRs, including PigmR, which confers broad-spectrum resistance to blast fungus. Here, we identify PIBP1 (PigmR-INTERACTING and BLAST RESISTANCE PROTEIN 1), an RRM (RNA-recognition motif) protein that specifically interacts with PigmR and other similar NLRs to trigger blast resistance. PigmR-promoted nuclear accumulation of PIBP1 ensures full blast resistance. We find that PIBP1 and a homolog, Os06 g02240, bind DNA and function as unconventional transcription factors at the promoters of the defense genes OsWAK14 and OsPAL1, activating their expression. Knockout of PIBP1 and Os06 g02240 greatly attenuated blast resistance. Collectively, our study discovers previously unappreciated RRM transcription factors that directly interact with NLRs to activate plant defense, establishing a direct link between transcriptional activation of immune responses with NLR-mediated pathogen perception.


Asunto(s)
Resistencia a la Enfermedad/genética , Proteínas NLR/genética , Oryza/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Sitios de Unión , Hongos/patogenicidad , Regulación de la Expresión Génica de las Plantas , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Regiones Promotoras Genéticas , Unión Proteica/genética , Transducción de Señal/genética
13.
Proc Natl Acad Sci U S A ; 121(16): e2313820121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38598343

RESUMEN

In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the extent of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high-throughput single-cell RNA sequencing to profile retinal cells of the common marmoset (Callithrix jacchus), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults. Our comparative analysis revealed that marmosets share almost all their foveal types with both humans and macaques, highlighting a conserved cellular structure among primate foveas. Furthermore, by tracing the developmental trajectory of cell types in the foveal and peripheral retina, we found distinct maturation paths for each. In-depth analysis of gene expression differences demonstrated that cone photoreceptors and Müller glia (MG), among others, show the greatest molecular divergence between these two regions. Utilizing single-cell ATAC-seq and gene-regulatory network inference, we uncovered distinct transcriptional regulations differentiating foveal cones from their peripheral counterparts. Further analysis of predicted ligand-receptor interactions suggested a potential role for MG in supporting the maturation of foveal cones. Together, these results provide valuable insights into foveal development, structure, and evolution.


Asunto(s)
Callithrix , Retina , Humanos , Animales , Recién Nacido , Callithrix/anatomía & histología , Retina/metabolismo , Fóvea Central/fisiología , Células Fotorreceptoras Retinianas Conos , Macaca , Mamíferos
14.
Genome Res ; 33(10): 1818-1832, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37730437

RESUMEN

The subventricular zone (SVZ) is a neurogenic niche that contributes to homeostasis and repair after brain injury. However, the effects of mild traumatic brain injury (mTBI) on the divergence of the regulatory DNA landscape within the SVZ and its link to functional alterations remain unexplored. In this study, we mapped the transcriptome atlas of murine SVZ and its responses to mTBI at the single-cell level. We observed cell-specific gene expression changes following mTBI and unveiled diverse cell-to-cell interaction networks that influence a wide array of cellular processes. Moreover, we report novel neurogenesis lineage trajectories and related key transcription factors, which we validate through loss-of-function experiments. Specifically, we validate the role of Tcf7l1, a cell cycle gene regulator, in promoting neural stem cell differentiation toward the neuronal lineage after mTBI, providing a potential target for regenerative medicine. Overall, our study profiles an SVZ transcriptome reference map, which underlies the differential cellular behavior in response to mTBI. The identified key genes and pathways that may ameliorate brain damage or facilitate neural repair serve as a comprehensive resource for drug discovery in the context of mTBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Células-Madre Neurales , Animales , Ratones , Transcriptoma , Células-Madre Neurales/metabolismo , Neuronas , Diferenciación Celular , Neurogénesis/fisiología , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/metabolismo
15.
Genome Res ; 33(10): 1690-1707, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37884341

RESUMEN

The rumen undergoes developmental changes during maturation. To characterize this understudied dynamic process, we profiled single-cell transcriptomes of about 308,000 cells from the rumen tissues of sheep and goats at 17 time points. We built comprehensive transcriptome and metagenome atlases from early embryonic to rumination stages, and recapitulated histomorphometric and transcriptional features of the rumen, revealing key transitional signatures associated with the development of ruminal cells, microbiota, and core transcriptional regulatory networks. In addition, we identified and validated potential cross-talk between host cells and microbiomes and revealed their roles in modulating the spatiotemporal expression of key genes in ruminal cells. Cross-species analyses revealed convergent developmental patterns of cellular heterogeneity, gene expression, and cell-cell and microbiome-cell interactions. Finally, we uncovered how the interactions can act upon the symbiotic rumen system to modify the processes of fermentation, fiber digestion, and immune defense. These results significantly enhance understanding of the genetic basis of the unique roles of rumen.


Asunto(s)
Metagenoma , Microbiota , Ovinos/genética , Animales , Transcriptoma , Rumen , Rumiantes/genética
16.
Nat Chem Biol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890433

RESUMEN

Biological nitrogen fixation requires substantial metabolic energy in form of ATP as well as low-potential electrons that must derive from central metabolism. During aerobic growth, the free-living soil diazotroph Azotobacter vinelandii transfers electrons from the key metabolite NADH to the low-potential ferredoxin FdxA that serves as a direct electron donor to the dinitrogenase reductases. This process is mediated by the RNF complex that exploits the proton motive force over the cytoplasmic membrane to lower the midpoint potential of the transferred electron. Here we report the cryogenic electron microscopy structure of the nitrogenase-associated RNF complex of A. vinelandii, a seven-subunit membrane protein assembly that contains four flavin cofactors and six iron-sulfur centers. Its function requires the strict coupling of electron and proton transfer but also involves major conformational changes within the assembly that can be traced with a combination of electron microscopy and modeling.

17.
Nucleic Acids Res ; 52(7): 3886-3895, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38324471

RESUMEN

The eukaryotic epigenetic modifications 5-methyldeoxycytosine (5mC) and N6-methyldeoxyadenine (6mA) have indispensable regulatory roles in gene expression and embryonic development. We recently identified an atypical bifunctional dioxygenase CcTet from Coprinopsis cinerea that works on both 5mC and 6mA demethylation. The nonconserved residues Gly331 and Asp337 of CcTet facilitate 6mA accommodation, while D337F unexpectedly abolishes 5mC oxidation activity without interfering 6mA demethylation, indicating a prominent distinct but unclear 5mC oxidation mechanism to the conventional Tet enzymes. Here, we assessed the molecular mechanism of CcTet in catalyzing 5mC oxidation by representing the crystal structure of CcTet-5mC-dsDNA complex. We identified the distinct mechanism by which CcTet recognizes 5mC-dsDNA compared to 6mA-dsDNA substrate. Moreover, Asp337 was found to have a central role in compensating for the loss of a critical 5mC-stablizing H-bond observed in conventional Tet enzymes, and stabilizes 5mC and subsequent intermediates through an H-bond with the N4 atom of the substrates. These findings improve our understanding of Tet enzyme functions in the dsDNA 5mC and 6mA demethylation pathways, and provide useful information for future discovery of small molecular probes targeting Tet enzymes in DNA active demethylation processes.


Asunto(s)
Agaricales , Dioxigenasas , 5-Metilcitosina/metabolismo , Cristalografía por Rayos X , Dioxigenasas/química , Dioxigenasas/genética , Dioxigenasas/metabolismo , Desmetilación del ADN , Metilación de ADN , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Enlace de Hidrógeno , Modelos Moleculares , Oxidación-Reducción , Especificidad por Sustrato , Adenosina/análogos & derivados , Agaricales/enzimología
19.
Front Neuroendocrinol ; 72: 101115, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37993020

RESUMEN

Bipolar disorder (BD) is worldwide a prevalent mental illness and a leading risk factor for suicide. Over the past three decades, it has been discovered that sex differences exist throughout the entire panorama of BD, but the etiologic regions and mechanisms that generate such differences remain poorly characterized. Available evidence indicates that the dorsolateral prefrontal cortex (DLPFC), a critical region that controls higher-order cognitive processing and mood, exhibits biological disparities between male and female patients with psychiatric disorders, which are highly correlated with the co-occurrence of psychotic symptoms. This review addresses the sex differences in BD concerning epidemiology, cognitive impairments, clinical manifestations, neuroimaging, and laboratory abnormalities. It also provides strong evidence linking DLPFC to the etiopathogenesis of these sex differences. We emphasize the importance of identifying gene signatures using human brain transcriptomics, which can depict sexually different variations, explain sex-biased symptomatic features, and provide novel targets for sex-specific therapeutics.


Asunto(s)
Trastorno Bipolar , Humanos , Masculino , Femenino , Trastorno Bipolar/etiología , Corteza Prefontal Dorsolateral , Corteza Prefrontal , Caracteres Sexuales , Encéfalo/patología
20.
Plant Physiol ; 195(2): 1712-1727, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38401163

RESUMEN

Improving nitrogen-use efficiency is an important path toward enhancing crop yield and alleviating the environmental impacts of fertilizer use. Ammonium (NH4+) is the energetically preferred inorganic N source for plants. The interaction of NH4+ with other nutrients is a chief determinant of ammonium-use efficiency (AUE) and of the tipping point toward ammonium toxicity, but these interactions have remained ill-defined. Here, we report that iron (Fe) accumulation is a critical factor determining AUE and have identified a substance that can enhance AUE by manipulating Fe availability. Fe accumulation under NH4+ nutrition induces NH4+ efflux in the root system, reducing both growth and AUE in Arabidopsis (Arabidopsis thaliana). Low external availability of Fe and a low plant Fe status substantially enhance protein N-glycosylation through a Vitamin C1-independent pathway, thereby reducing NH4+ efflux to increase AUE during the vegetative stage in Arabidopsis under elevated NH4+ supply. We confirm the validity of the iron-ammonium interaction in the important crop species lettuce (Lactuca sativa). We further show that dolomite can act as an effective substrate to subdue Fe accumulation under NH4+ nutrition by reducing the expression of Low Phosphate Root 2 and acidification of the rhizosphere. Our findings present a strategy to improve AUE and reveal the underlying molecular-physiological mechanism.


Asunto(s)
Compuestos de Amonio , Arabidopsis , Hierro , Raíces de Plantas , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Hierro/metabolismo , Compuestos de Amonio/metabolismo , Glicosilación , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Lactuca/metabolismo , Lactuca/crecimiento & desarrollo , Lactuca/genética , Nitrógeno/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Rizosfera , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda