Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 413
Filtrar
1.
FASEB J ; 38(1): e23312, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38161282

RESUMEN

ProBDNF is the precursor protein of brain-derived neurotrophic factor (BDNF) expressed in the central nervous system and peripheral tissues. Previous studies showed that the blood levels of both proBDNF and p75 neurotrophic receptors (p75NTR) in major depressive disorder (MDD) were increased, but which blood cell types express proBDNF and its receptors is not known. Furthermore, the relationship between proBDNF/p75NTR and inflammatory cytokines in peripheral blood of MDD is unclear. Peripheral blood mononuclear cells (PBMCs) and serum were obtained from depressive patients (n = 32) and normal donors (n = 20). We examined the expression of proBDNF and inflammatory markers and their correlative relationship in patients with major depression. Using flow cytometry analysis, we examined which blood cells express proBDNF and its receptors. Finally, the role of proBDNF/p75NTR signal in inflammatory immune activity of PBMCs was verified in vitro experiments. Inflammatory cytokines in PBMC from MDD patients were increased and correlated with the major depression scores. The levels of IL-1ß and IL-10 were also positively correlated with the major depression scores, while the levels of TNF-α and IL-6 were negatively correlated with the major depression scores. Intriguingly, the levels of sortilin were positively correlated with IL-1ß. Q-PCR and Western blots showed proBDNF, p75NTR, and sortilin levels were significantly increased in PBMCs from MDD patients compared with that from the normal donors. Flow cytometry studies showed that proBDNF and p75NTR were present mainly in CD4+ and CD8+ T cells. The number of proBDNF and p75NTR positive CD4+ and CD8+ T cells from MDD patients was increased and subsequently reversed after therapeutic management. Exogenous proBDNF protein or p75ECD-Fc treatment of cultured PBMC affected the release of inflammatory cytokines in vitro. ProBDNF promoted the expression of inflammatory cytokines, while p75ECD-Fc inhibited the expression of inflammatory cytokines. Given there was an inflammatory response of lymphocytes to proBDNF, it is suggested that proBDNF/p75NTR signaling may upstream inflammatory cytokines in MDD. Our data suggest that proBDNF/p75NTR signaling may not only serve as biomarkers but also may be a potential therapeutic target for MDD.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/metabolismo , Leucocitos Mononucleares/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Regulación hacia Arriba , Linfocitos T CD8-positivos/metabolismo , Depresión , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas/metabolismo
2.
J Physiol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953534

RESUMEN

The central histaminergic system has a pivotal role in emotional regulation and psychiatric disorders, including anxiety, depression and schizophrenia. However, the effect of histamine on neuronal activity of the centrolateral amygdala (CeL), an essential node for fear and anxiety processing, remains unknown. Here, using immunostaining and whole-cell patch clamp recording combined with optogenetic manipulation of histaminergic terminals in CeL slices prepared from histidine decarboxylase (HDC)-Cre rats, we show that histamine selectively suppresses excitatory synaptic transmissions, including glutamatergic transmission from the basolateral amygdala, on both PKC-δ- and SOM-positive CeL neurons. The histamine-induced effect is mediated by H3 receptors expressed on VGLUT1-/VGLUT2-positive presynaptic terminals in CeL. Furthermore, optoactivation of histaminergic afferent terminals from the hypothalamic tuberomammillary nucleus (TMN) also significantly suppresses glutamatergic transmissions in CeL via H3 receptors. Histamine neither modulates inhibitory synaptic transmission by presynaptic H3 receptors nor directly excites CeL neurons by postsynaptic H1, H2 or H4 receptors. These results suggest that histaminergic afferent inputs and presynaptic H3 heteroreceptors may hold a critical position in balancing excitatory and inhibitory synaptic transmissions in CeL by selective modulation of glutamatergic drive, which may not only account for the pathophysiology of psychiatric disorders but also provide potential psychotherapeutic targets. KEY POINTS: Histamine selectively suppresses the excitatory, rather than inhibitory, synaptic transmissions on both PKC-δ- and SOM-positive neurons in the centrolateral amygdala (CeL). H3 receptors expressed on VGLUT1- or VGLUT2-positive afferent terminals mediate the suppression of histamine on glutamatergic synaptic transmission in CeL. Optogenetic activation of hypothalamic tuberomammillary nucleus (TMN)-CeL histaminergic projections inhibits glutamatergic transmission in CeL via H3 receptors.

3.
Small ; : e2400254, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38402432

RESUMEN

Pyroptosis, a new mode of regulatory cell death, holds a promising prospect in tumor therapy. The occurrence of pyroptosis can trigger the release of damage-associated molecular patterns (DAMPs) and activate the antitumor immune response. Moreover, enhancing intracellular reactive oxygen species (ROS) generation can effectively induce pyroptosis. Herein, an integrated nanoplatform (hCZAG) based on zeolitic imidazolate framework-8 (ZIF-8) with Cu2+ and Zn2+ as active nodes and glucose oxidase (GOx) loading is constructed to evoke pyroptosis. GOx can effectively elevate intracellular hydrogen peroxide (H2 O2 ) levels to regulate the unfavorable tumor microenvironment (TME). Cu2+ can be reduced to Cu+ by endogenous overexpressed GSH and both Cu2+ and Cu+ can exert Fenton-like activity to promote ROS generation and amplify oxidative stress. In addition, the accumulation of Cu2+ leads to the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), thus resulting in cuproptosis. Notably, the outburst of ROS induced by hCZAG activates Caspase-1 proteins, leads to the cleavage of gasdermin D (GSDMD), and induces pyroptosis. Pyroptosis further elicits an adaptive immune response, leading to immunogenic cell death (ICD). This study provides effective strategies for triggering pyroptosis-mediated immunotherapy and achieving improved therapeutic effects.

4.
Protein Expr Purif ; 215: 106408, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38008389

RESUMEN

Hexokinases (HKs) play a vital role in glucose metabolism, which controls the first committed step catalyzing the production of glucose-6-phosphate from glucose. Two HKs (CGIHK1 and CGIHK2) from the Pacific oyster Crassostrea giga were cloned and characterized. CGIHK1 and CGIHK2 were recombinantly expressed in Escherichia coli and successfully purified by the Ni-NTA column. The optimum pH of the two enzymes was pH 8.0 and 8.5, respectively. The optimum temperature of the two enzymes was 42 °C and 50 °C, respectively. Both enzymes showed a clear requirement for divalent magnesium and were strongly inhibited by SDS. CGIHK1 exhibited highly strict substrate specificity to glucose, while CGIHK2 could also catalyze other 11 monosaccharide substrates. This is the first report on the in vitro biosynthesis of glucose-6-phosphate by the hexokinases from Crassostrea gigas. The facile expression and purification procedures combined with different substrate specificities make CGIHK1 and CGIHK2 candidates for the biosynthesis of glucose-6-phosphate and other sugar-phosphates.


Asunto(s)
Crassostrea , Hexoquinasa , Animales , Hexoquinasa/metabolismo , Crassostrea/genética , Glucosa-6-Fosfato/metabolismo , Temperatura , Glucosa/metabolismo
5.
BMC Public Health ; 24(1): 1399, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796443

RESUMEN

BACKGROUND: Influenza is a highly contagious respiratory disease that presents a significant challenge to public health globally. Therefore, effective influenza prediction and prevention are crucial for the timely allocation of resources, the development of vaccine strategies, and the implementation of targeted public health interventions. METHOD: In this study, we utilized historical influenza case data from January 2013 to December 2021 in Fuzhou to develop four regression prediction models: SARIMA, Prophet, Holt-Winters, and XGBoost models. Their predicted performance was assessed by using influenza data from the period from January 2022 to December 2022 in Fuzhou. These models were used for fitting and prediction analysis. The evaluation metrics, including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE), were employed to compare the performance of these models. RESULTS: The results indicate that the epidemic of influenza in Fuzhou exhibits a distinct seasonal and cyclical pattern. The influenza cases data displayed a noticeable upward trend and significant fluctuations. In our study, we employed SARIMA, Prophet, Holt-Winters, and XGBoost models to predict influenza outbreaks in Fuzhou. Among these models, the XGBoost model demonstrated the best performance on both the training and test sets, yielding the lowest values for MSE, RMSE, and MAE among the four models. CONCLUSION: The utilization of the XGBoost model significantly enhances the prediction accuracy of influenza in Fuzhou. This study makes a valuable contribution to the field of influenza prediction and provides substantial support for future influenza response efforts.


Asunto(s)
Brotes de Enfermedades , Predicción , Gripe Humana , Humanos , China/epidemiología , Gripe Humana/epidemiología , Modelos Estadísticos , Estaciones del Año
6.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33846246

RESUMEN

The high northern latitudes (>50°) experienced a pronounced surface stilling (i.e., decline in winds) with climate change. As a drying factor, the influences of changes in winds on the date of autumn foliar senescence (DFS) remain largely unknown and are potentially important as a mechanism explaining the interannual variability of autumn phenology. Using 183,448 phenological observations at 2,405 sites, long-term site-scale water vapor and carbon dioxide flux measurements, and 34 y of satellite greenness data, here we show that the decline in winds is significantly associated with extended DFS and could have a relative importance comparable with temperature and precipitation effects in contributing to the DFS trends. We further demonstrate that decline in winds reduces evapotranspiration, which results in less soil water losses and consequently more favorable growth conditions in late autumn. In addition, declining winds also lead to less leaf abscission damage which could delay leaf senescence and to a decreased cooling effect and therefore less frost damage. Our results are potentially useful for carbon flux modeling because an improved algorithm based on these findings projected overall widespread earlier DFS than currently expected by the end of this century, contributing potentially to a positive feedback to climate.


Asunto(s)
Hojas de la Planta/metabolismo , Árboles/metabolismo , Viento , Altitud , Ciclo del Carbono/fisiología , China , Clima , Cambio Climático , Ecosistema , Tecnología de Sensores Remotos/métodos , Estaciones del Año , Temperatura , Tiempo (Meteorología)
7.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493659

RESUMEN

The MYC axis is disrupted in cancer, predominantly through activation of the MYC family oncogenes but also through inactivation of the MYC partner MAX or of the MAX partner MGA. MGA and MAX are also members of the polycomb repressive complex, ncPRC1.6. Here, we use genetically modified MAX-deficient small-cell lung cancer (SCLC) cells and carry out genome-wide and proteomics analyses to study the tumor suppressor function of MAX. We find that MAX mutant SCLCs have ASCL1 or NEUROD1 or combined ASCL1/NEUROD1 characteristics and lack MYC transcriptional activity. MAX restitution triggers prodifferentiation expression profiles that shift when MAX and oncogenic MYC are coexpressed. Although ncPRC1.6 can be formed, the lack of MAX restricts global MGA occupancy, selectively driving its recruitment toward E2F6-binding motifs. Conversely, MAX restitution enhances MGA occupancy to repress genes involved in different functions, including stem cell and DNA repair/replication. Collectively, these findings reveal that MAX mutant SCLCs have either ASCL1 or NEUROD1 or combined characteristics and are MYC independent and exhibit deficient ncPRC1.6-mediated gene repression.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Proteínas del Grupo Polycomb/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Apoptosis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas del Grupo Polycomb/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Células Tumorales Cultivadas
8.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397008

RESUMEN

Although more than 30 different types of neuropeptides have been identified in various cell types and circuits of the cerebellum, their unique functions in the cerebellum remain poorly understood. Given the nature of their diffuse distribution, peptidergic systems are generally assumed to exert a modulatory effect on the cerebellum via adaptively tuning neuronal excitability, synaptic transmission, and synaptic plasticity within cerebellar circuits. Moreover, cerebellar neuropeptides have also been revealed to be involved in the neurogenetic and developmental regulation of the developing cerebellum, including survival, migration, differentiation, and maturation of the Purkinje cells and granule cells in the cerebellar cortex. On the other hand, cerebellar neuropeptides hold a critical position in the pathophysiology and pathogenesis of many cerebellar-related motor and psychiatric disorders, such as cerebellar ataxias and autism. Over the past two decades, a growing body of evidence has indicated neuropeptides as potential therapeutic targets to ameliorate these diseases effectively. Therefore, this review focuses on eight cerebellar neuropeptides that have attracted more attention in recent years and have significant potential for clinical application associated with neurodegenerative and/or neuropsychiatric disorders, including brain-derived neurotrophic factor, corticotropin-releasing factor, angiotensin II, neuropeptide Y, orexin, thyrotropin-releasing hormone, oxytocin, and secretin, which may provide novel insights and a framework for our understanding of cerebellar-related disorders and have implications for novel treatments targeting neuropeptide systems.


Asunto(s)
Enfermedades Cerebelosas , Neuropéptidos , Humanos , Cerebelo/metabolismo , Células de Purkinje/metabolismo , Neuronas/metabolismo , Corteza Cerebelosa/metabolismo , Neuropéptidos/metabolismo , Enfermedades Cerebelosas/patología
9.
Artículo en Inglés | MEDLINE | ID: mdl-38825860

RESUMEN

This study investigated the effects of cottonseed meal protein hydrolysate (CPH) on the growth performance, carcass characteristics, serum biochemical indices, intestinal morphology, and enzyme activities of yellow-feather broilers. We randomly divided 240 chicks into four groups, each with six replicates: a basal diet with 0% (CON), 1% (LCPH), 3% (MCPH), or 5% (HCPH) CPH. The trail spanned 63 days and included three phases: Days 1-21, 22-42, and 43-63. Increased average daily gain (ADG) and decreased ratio of feed to gain (F/G) with LCPH were observed in 21-day-old broilers (P < 0.05). MCPH led to higher ADG and average daily feed intake (ADFI) in 42-day-old broilers (P < 0.05). Additionally, CPH supplementation resulted in increased dressing percentage, percentage of half-eviscerated yield, percentage of eviscerated yield, breast muscle rate, and leg muscle rate were observed (P < 0.05) with diet. The serum levels of total protein (TP), high-density lipoprotein cholesterol (HDL-C), calcium (Ca), and phosphorus (P) were enhanced, and blood urea nitrogen (BUN) and triglyceride (TG) levels decreased with diet and CPH (P < 0.05). CPH increased the length of the jejunum and ileum and the weight of the duodenum, jejunum, and ileum in 21-day-old broilers (P < 0.05). Alterations in the duodenal villus structure in broilers occurred on Days 21 and 42, and the CPH groups performed better; however, a similar change occurred in the jejunum on Days 42 and 63 (P < 0.05). MCPH and HCPH enhanced trypsin activity in the duodenum of 21-day-old and 63-day-old broilers (p < 0.05). Chymotrypsin activity increased (P > 0.05) in the duodenum of 63-day-old broilers fed MCPH. Lipase activity increased (P < 0.05) in the jejuna of 21-day-old broilers treated with HCPH. CPH increased trypsin activity in the ilea of 21-day-old broilers (P < 0.05). These results showed that CPH influenced the growth performance, carcass characteristics, serum biochemical indices, and intestinal morphology of yellow-feather broilers, which are related to growth stage. The recommended CPH level in broilers is 1% before 21 days of age and 3% after 21 days of age.

10.
Anal Chem ; 95(2): 1710-1720, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36599415

RESUMEN

Chemodynamic therapy (CDT) is an innovative and effective treatment that relies on the Fenton or Fenton-like reaction, in which endogenous H2O2 overproduction is converted into cytotoxic hydroxyl radicals (•OH) to suppress tumor growth. Nevertheless, the therapeutic efficiency of CDT is severely restricted by undesirable properties, such as reaction conditions and catalyst performance. Herein, a 2D Ti3C2 MXene/Cu2O nanosheet (MCP NS)-based multifunctional nanoplatform (3-BP@MCG NSs) has been constructed, in which glucose oxidase (GOx) and respiration inhibitor 3-bromopyruvate (3-BP) are sequentially embedded. In this structure, the copper-based catalyst Cu2O releases Cu+ in an acid-triggered manner in the tumor microenvironment (TME), which activates the Fenton-like reaction to catalyze the generation of •OH for CDT. The composite has excellent photothermal properties and a high-resolution photoacoustic imaging (PAI) capability in the near-infrared (NIR) region, and especially under NIR irradiation, the photothermal effect generated by the nanosheets accelerates catalysis. GOx is a natural enzyme catalyst for depleting glucose and oxygen content in cells, upregulating H2O2 levels in situ, and thereby improving the therapeutic effect of CDT. What is more, the supported 3-BP not only reduces oxygen consumption to alleviate hypoxia levels but also inhibits the glycolysis process and lowers ATP levels by suppressing hexokinase activity. As a result, 3-BP@MCG NSs optimize the unique properties of MCP NSs, GOx, and 3-BP via mutual promotion, realizing self-enhanced PTT/CDT synergistic therapy. This work establishes an emerging strategy for highly efficient PAI-guided integrated treatment and provides a proof of concept for the cooperation of hypoxia relief and in situ H2O2 and NIR synergistic enhancement to improve therapeutic efficiency.


Asunto(s)
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Peróxido de Hidrógeno , Titanio , Glucosa Oxidasa , Hipoxia , Línea Celular Tumoral , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
11.
Anal Chem ; 95(37): 14025-14035, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37694580

RESUMEN

Nanocatalytic therapy (NCT) has made great achievements in tumor treatments due to its remarkable enzyme-like activities and high specificity. Nevertheless, the limited types of nanozymes and undesirable tumor microenvironments (TME) greatly weaken the therapeutic efficiency. Developing a combination therapy integrating NCT and other strategies is of great significance for optimal treatment outcomes. Herein, a AuPt-loaded Cu-doped polydopamine nanocomposite (AuPt@Cu-PDA) with multiple enzyme-like activities was rationally designed, which integrated photothermal therapy (PTT) and NCT. The peroxidase (POD)-like activity of AuPt@Cu-PDA can catalyze hydrogen peroxide (H2O2) into ·OH, and the catalase (CAT)-mimic activity can decompose H2O2 into O2 to alleviate hypoxia of TME, and O2 can be further converted into toxic ·O2- by its oxidase (OXD)-mimic activity. In addition, Cu2+ in AuPt@Cu-PDA can effectively consume GSH overexpressed in tumor cells. The boosting of reactive oxygen species (ROS) and glutathione (GSH) depletion can lead to severe oxidative stress, which can be enhanced by its excellent photothermal performance. Most importantly, the accumulation of Cu2+ can disrupt copper homeostasis, promote the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), disrupt the mitochondrial tricarboxylic acid (TCA) cycle, and finally result in cuproptosis. Collectively, photothermal and photoacoustic imaging (PTI/PAI)-guided cuproptosis-enhanced NCT/PTT can be achieved. This work may expand the application of nanozymes in synergistic therapy and provide new insights into cuproptosis-related therapeutic strategies.


Asunto(s)
Apoptosis , Cobre , Peróxido de Hidrógeno , Diagnóstico por Imagen , Glutatión , Terapia Fototérmica , Microambiente Tumoral , Línea Celular Tumoral
12.
PLoS Pathog ; 17(10): e1010005, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34653218

RESUMEN

Uropathogenic Escherichia coli (UPEC) deploy an array of virulence factors to successfully establish urinary tract infections. Hemolysin is a pore-forming toxin, and its expression correlates with the severity of UPEC infection. Two-component signaling systems (TCSs) are a major mechanism by which bacteria sense environmental cues and respond by initiating adaptive responses. Here, we began this study by characterizing a novel TCS (C3564/C3565, herein renamed orhK/orhR for oxidative resistance and hemolysis kinase/regulator) that is encoded on a UPEC pathogenicity island, using bioinformatic and biochemical approaches. A prevalence analysis indicates that orhK/orhR is highly associated with the UPEC pathotype, and it rarely occurs in other E. coli pathotypes tested. We then demonstrated that OrhK/OrhR directly activates the expression of a putative methionine sulfoxide reductase system (C3566/C3567) and hemolysin (HlyA) in response to host-derived hydrogen peroxide (H2O2) exposure. OrhK/OrhR increases UPEC resistance to H2O2 in vitro and survival in macrophages in cell culture via C3566/C3567. Additionally, OrhK/OrhR mediates hemolysin-induced renal epithelial cell and macrophage death via a pyroptosis pathway. Reducing intracellular H2O2 production by a chemical inhibitor impaired OrhK/OrhR-mediated activation of c3566-c3567 and hlyA. We also uncovered that UPEC links the two key virulence traits by cotranscribing the c3566-c3567 and hlyCABD operons. Taken together, our data suggest a paradigm in which a signal transduction system coordinates both bacterial pathogen defensive and offensive traits in the presence of host-derived signals; and this exquisite mechanism likely contributes to hemolysin-induced severe pathological outcomes.


Asunto(s)
Infecciones por Escherichia coli/patología , Proteínas Hemolisinas/metabolismo , Infecciones Urinarias/patología , Escherichia coli Uropatógena/patogenicidad , Virulencia/fisiología , Línea Celular , Infecciones por Escherichia coli/metabolismo , Humanos , Estrés Oxidativo/fisiología , Piroptosis/fisiología , Transducción de Señal/fisiología , Infecciones Urinarias/metabolismo , Escherichia coli Uropatógena/metabolismo
13.
Electrophoresis ; 44(9-10): 793-806, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36787349

RESUMEN

In this study, the capillary electrophoresis-photodiode array detector was employed for the analysis of four iridoid compounds in Gentiana macrophylla Radix (RGM), and the method was optimized based on the concept of analytical quality by design (AQbD). The peak areas relative standard deviation (n = 3) and resolution of the four analytes were selected as critical method attributes. Fractional factorial design test combined with Pareto analysis were employed to screen critical method parameters (buffer concentration, pH, sodium dodecyl sulfate [SDS] micelle concentration, temperature, and voltage). Subsequently, three main factors (buffer concentration, buffer pH, and SDS concentration) were selected by central composite design test for constructing the design space. The optimal separation conditions as follows: capillary column (50.2 cm × 50 µm, detection length 40 cm). Working background electrolyte consisted of 51 mmol/L borax solution (pH = 9.47) and 40 mmol/L SDS. The samples were injected by pressure (5 s at 0.5 psi) and the detection was performed at 254 nm. Applied voltage was 20 kV and column temperature was 23°C. The developed method is rapid and reliable for the quantitative analysis of four iridoid compounds in RGM, providing a reference for the application of AQbD concept in the analysis of natural products.


Asunto(s)
Medicamentos Herbarios Chinos , Gentiana , Iridoides , Electroforesis Capilar/métodos , Raíces de Plantas/química , Medicamentos Herbarios Chinos/análisis
14.
FASEB J ; 36(3): e22180, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35129860

RESUMEN

P75 pan-neurotrophin receptor (p75NTR) is an important receptor for the role of neurotrophins in survival and death of neurons during development and after nerve injury. Our previous research found that the precursor of brain-derived neurotrophic factor (proBDNF) regulates pain as an inflammatory mediator. The current understanding of the role of proBDNF/p75NTR signaling pathway in inflammatory arthritis pain and rheumatoid arthritis (RA) is unclear. We recruited 20 RA patients, 20 healthy donors (HDs), and 10 osteoarthritis (OA) patients. Hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) of proBDNF and p75NTR in synovial membrane were performed and evaluated. We next examined the mRNA and protein expression of proBDNF/p75NTR signaling pathway in peripheral blood mononuclear cells (PBMCs) and synovial tissue. ELISA and flow cytometry were assessed between the blood of RA patients and HD. To induce RA, collagen-induced arthritis (CIA) were induced in mice. We found over-synovitis of RA synovial membrane compared to OA controls in histologic sections. P75NTR and sortilin mRNA, and proBDNF protein level were significantly increased in PBMCs of RA patients compared with the HD. Consistently, ELISA showed that p75NTR, sortilin, tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and interleukin-10 (IL-10) levels in the serum of RA patients were increased compared with HD and p75NTR, sortilin were positively correlated with Disease Activity Score in 28 joints (DAS28). In addition, using flow cytometry we showed that the increased levels of proBDNF and p75NTR characterized in CD4+ and CD8+ T cells of RA patients were subsequently reversed with methotrexate (MTX) treatment. Furthermore, we found pathological changes, inflammatory pain, upregulation of the mRNA and protein expression of proBDNF/p75NTR signaling pathway, and upregulation of inflammatory cytokines in spinal cord using a well-established CIA mouse model. We showed intravenous treatment of recombinant p75ECD-Fc that biologically blocked all inflammatory responses and relieved inflammatory pain of animals with CIA. Our findings showed the involvement of proBDNF/p75NTR pathway in the RA inflammatory response and how blocking it with p75ECD-Fc may be a promising therapeutic treatment for RA.


Asunto(s)
Artritis Reumatoide/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Interleucinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Animales , Femenino , Humanos , Interleucinas/sangre , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Precursores de Proteínas/metabolismo , Membrana Sinovial/metabolismo , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/sangre
15.
Cerebellum ; 22(5): 888-904, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36040660

RESUMEN

The classical motor center cerebellum is one of the most consistent structures of abnormality in autism spectrum disorders (ASD), and neuropeptide oxytocin is increasingly explored as a potential pharmacotherapy for ASD. However, whether oxytocin targets the cerebellum for therapeutic effects remains unclear. Here, we report a localization of oxytocin receptor (OXTR) in Purkinje cells (PCs) of cerebellar lobule Crus I, which is functionally connected with ASD-implicated circuits. OXTR activation neither affects firing activities, intrinsic excitability, and synaptic transmission of normal PCs nor improves abnormal intrinsic excitability and synaptic transmission of PCs in maternal immune activation (MIA) mouse model of autism. Furthermore, blockage of OXTR in Crus I in wild-type mice does not induce autistic-like social, stereotypic, cognitive, and anxiety-like behaviors. These results suggest that oxytocin signaling in Crus I PCs seems to be uninvolved in ASD pathophysiology, and contribute to understanding of targets and mechanisms of oxytocin in ASD treatment.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ratones , Animales , Receptores de Oxitocina , Oxitocina , Células de Purkinje
16.
Langmuir ; 39(40): 14441-14450, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37747810

RESUMEN

Sulfites can pollute the environment and pose a great risk to human health in daily life, so there is an urgent need to develop efficient and lightweight sulfite detection materials. In this study, metal-organic framework-5-NH2/urushiol/PVP nanofiber composite films were prepared by an electrospinning technique for the fluorescence detection of sulfites. The results showed that the composite film could resist sulfuric acid corrosion at a concentration of 80% and inactivate Escherichia coli and Staphylococcus aureus at a concentration of 99%, and its maximum tensile strength was increased from the initial 2.753 to 4.145 N. The composite film was sensitive and specific for the fluorescence detection of sulfite.

17.
Pharmacol Res ; 191: 106773, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37068531

RESUMEN

Specific medications to combat cerebellar ataxias, a group of debilitating movement disorders characterized by difficulty with walking, balance and coordination, are still lacking. Notably, cerebellar microglial activation appears to be a common feature in different types of ataxic patients and rodent models. However, direct evidence that cerebellar microglial activation in vivo is sufficient to induce ataxia is still lacking. Here, by employing chemogenetic approaches to manipulate cerebellar microglia selectively and directly, we found that specific chemogenetic activation of microglia in the cerebellar vermis directly leads to ataxia symptoms in wild-type mice and aggravated ataxic motor deficits in 3-acetylpyridine (3-AP) mice, a classic mouse model of cerebellar ataxia. Mechanistically, cerebellar microglial proinflammatory activation induced by either chemogenetic M3D(Gq) stimulation or 3-AP modeling hyperexcites Purkinje cells (PCs), which consequently triggers ataxia. Blockade of microglia-derived TNF-α, one of the most important proinflammatory cytokines, attenuates the hyperactivity of PCs driven by microglia. Moreover, chemogenetic inhibition of cerebellar microglial activation or suppression of cerebellar microglial activation by PLX3397 and minocycline reduces the production of proinflammatory cytokines, including TNF-α, to effectively restore the overactivation of PCs and alleviate motor deficits in 3-AP mice. These results suggest that cerebellar microglial activation may aggravate the neuroinflammatory response and subsequently induce dysfunction of PCs, which in turn triggers ataxic motor deficits. Our findings thus reveal a causal relationship between proinflammatory activation of cerebellar microglia and ataxic motor symptoms, which may offer novel evidence for therapeutic intervention for cerebellar ataxias by targeting microglia and microglia-derived inflammatory mediators.


Asunto(s)
Ataxia Cerebelosa , Ratones , Animales , Ataxia Cerebelosa/inducido químicamente , Células de Purkinje/fisiología , Microglía , Factor de Necrosis Tumoral alfa/farmacología , Cerebelo , Citocinas
19.
Nature ; 544(7648): 65-70, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28329766

RESUMEN

The metabolism of carbohydrate polymers drives microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron uses the most structurally complex glycan known: the plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but 1 of its 21 distinct glycosidic linkages. The deconstruction of rhamnogalacturonan-II side chains and backbone are coordinated to overcome steric constraints, and the degradation involves previously undiscovered enzyme families and catalytic activities. The degradation system informs revision of the current structural model of rhamnogalacturonan-II and highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the most challenging glycan in the human diet.


Asunto(s)
Bacteroides thetaiotaomicron/enzimología , Bacteroides thetaiotaomicron/metabolismo , Biocatálisis , Tracto Gastrointestinal/microbiología , Glicósido Hidrolasas/metabolismo , Pectinas/química , Pectinas/metabolismo , Bacteroides thetaiotaomicron/crecimiento & desarrollo , Boratos/química , Boratos/metabolismo , Dominio Catalítico , Microbioma Gastrointestinal , Glicósido Hidrolasas/química , Glicósido Hidrolasas/clasificación , Humanos , Modelos Moleculares , Especificidad por Sustrato
20.
Proc Natl Acad Sci U S A ; 117(50): 32155-32164, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257584

RESUMEN

Anxiety commonly co-occurs with obsessive-compulsive disorder (OCD). Both of them are closely related to stress. However, the shared neurobiological substrates and therapeutic targets remain unclear. Here we report an amelioration of both anxiety and OCD via the histamine presynaptic H3 heteroreceptor on glutamatergic afferent terminals from the prelimbic prefrontal cortex (PrL) to the nucleus accumbens (NAc) core, a vital node in the limbic loop. The NAc core receives direct hypothalamic histaminergic projections, and optogenetic activation of hypothalamic NAc core histaminergic afferents selectively suppresses glutamatergic rather than GABAergic synaptic transmission in the NAc core via the H3 receptor and thus produces an anxiolytic effect and improves anxiety- and obsessive-compulsive-like behaviors induced by restraint stress. Although the H3 receptor is expressed in glutamatergic afferent terminals from the PrL, basolateral amygdala (BLA), and ventral hippocampus (vHipp), rather than the thalamus, only the PrL- and not BLA- and vHipp-NAc core glutamatergic pathways among the glutamatergic afferent inputs to the NAc core is responsible for co-occurrence of anxiety- and obsessive-compulsive-like behaviors. Furthermore, activation of the H3 receptor ameliorates anxiety and obsessive-compulsive-like behaviors induced by optogenetic excitation of the PrL-NAc glutamatergic afferents. These results demonstrate a common mechanism regulating anxiety- and obsessive-compulsive-like behaviors and provide insight into the clinical treatment strategy for OCD with comorbid anxiety by targeting the histamine H3 receptor in the NAc core.


Asunto(s)
Trastornos de Ansiedad/tratamiento farmacológico , Agonistas de los Receptores Histamínicos/administración & dosificación , Núcleo Accumbens/fisiopatología , Trastorno Obsesivo Compulsivo/tratamiento farmacológico , Receptores Histamínicos H3/metabolismo , Vías Aferentes/efectos de los fármacos , Vías Aferentes/fisiopatología , Animales , Trastornos de Ansiedad/etiología , Trastornos de Ansiedad/fisiopatología , Trastornos de Ansiedad/psicología , Modelos Animales de Enfermedad , Glutamatos/metabolismo , Histamina/metabolismo , Antagonistas de los Receptores Histamínicos H3/administración & dosificación , Humanos , Área Hipotalámica Lateral/efectos de los fármacos , Área Hipotalámica Lateral/fisiopatología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Núcleo Accumbens/citología , Núcleo Accumbens/efectos de los fármacos , Trastorno Obsesivo Compulsivo/etiología , Trastorno Obsesivo Compulsivo/fisiopatología , Trastorno Obsesivo Compulsivo/psicología , Optogenética , Técnicas de Placa-Clamp , Corteza Prefrontal/citología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiopatología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Ratas , Ratas Transgénicas , Técnicas Estereotáxicas , Estrés Psicológico/complicaciones , Estrés Psicológico/psicología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda