Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 12.041
Filtrar
Más filtros

Publication year range
1.
Cell ; 187(11): 2855-2874.e19, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657603

RESUMEN

Progress in understanding early human development has been impeded by the scarcity of reference datasets from natural embryos, particularly those with spatial information during crucial stages like gastrulation. We conducted high-resolution spatial transcriptomics profiling on 38,562 spots from 62 transverse sections of an intact Carnegie stage (CS) 8 human embryo. From this spatial transcriptomic dataset, we constructed a 3D model of the CS8 embryo, in which a range of cell subtypes are identified, based on gene expression patterns and positional register, along the anterior-posterior, medial-lateral, and dorsal-ventral axis in the embryo. We further characterized the lineage trajectories of embryonic and extra-embryonic tissues and associated regulons and the regionalization of signaling centers and signaling activities that underpin lineage progression and tissue patterning during gastrulation. Collectively, the findings of this study provide insights into gastrulation and post-gastrulation development of the human embryo.


Asunto(s)
Embrión de Mamíferos , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Imagenología Tridimensional , Humanos , Embrión de Mamíferos/metabolismo , Transcriptoma/genética , Gástrula/metabolismo , Gástrula/embriología , Transducción de Señal , Linaje de la Célula , Perfilación de la Expresión Génica , Tipificación del Cuerpo/genética
2.
Cell ; 186(26): 5859-5875.e24, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38052213

RESUMEN

Embryogenesis necessitates harmonious coordination between embryonic and extraembryonic tissues. Although stem cells of both embryonic and extraembryonic origins have been generated, they are grown in different culture conditions. In this study, utilizing a unified culture condition that activates the FGF, TGF-ß, and WNT pathways, we have successfully derived embryonic stem cells (FTW-ESCs), extraembryonic endoderm stem cells (FTW-XENs), and trophoblast stem cells (FTW-TSCs) from the three foundational tissues of mouse and cynomolgus monkey (Macaca fascicularis) blastocysts. This approach facilitates the co-culture of embryonic and extraembryonic stem cells, revealing a growth inhibition effect exerted by extraembryonic endoderm cells on pluripotent cells, partially through extracellular matrix signaling. Additionally, our cross-species analysis identified both shared and unique transcription factors and pathways regulating FTW-XENs. The embryonic and extraembryonic stem cell co-culture strategy offers promising avenues for developing more faithful embryo models and devising more developmentally pertinent differentiation protocols.


Asunto(s)
Embrión de Mamíferos , Células Madre Embrionarias , Animales , Técnicas de Cocultivo , Macaca fascicularis , Células Madre Embrionarias/metabolismo , Diferenciación Celular , Endodermo/metabolismo , Linaje de la Célula
3.
Nat Immunol ; 25(3): 552-561, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38263463

RESUMEN

The steady flow of lactic acid (LA) from tumor cells to the extracellular space via the monocarboxylate transporter symport system suppresses antitumor T cell immunity. However, LA is a natural energy metabolite that can be oxidized in the mitochondria and could potentially stimulate T cells. Here we show that the lactate-lowering mood stabilizer lithium carbonate (LC) can inhibit LA-mediated CD8+ T cell immunosuppression. Cytoplasmic LA increased the pumping of protons into lysosomes. LC interfered with vacuolar ATPase to block lysosomal acidification and rescue lysosomal diacylglycerol-PKCθ signaling to facilitate monocarboxylate transporter 1 localization to mitochondrial membranes, thus transporting LA into the mitochondria as an energy source for CD8+ T cells. These findings indicate that targeting LA metabolism using LC could support cancer immunotherapy.


Asunto(s)
Antimaníacos , Ácido Láctico , Carbonato de Litio , Mitocondrias , Neoplasias , Humanos , Linfocitos T CD8-positivos , Ácido Láctico/metabolismo , Carbonato de Litio/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias/metabolismo , Antimaníacos/farmacología
4.
Immunity ; 55(2): 324-340.e8, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139353

RESUMEN

The aryl hydrocarbon receptor (AhR) is a sensor of products of tryptophan metabolism and a potent modulator of immunity. Here, we examined the impact of AhR in tumor-associated macrophage (TAM) function in pancreatic ductal adenocarcinoma (PDAC). TAMs exhibited high AhR activity and Ahr-deficient macrophages developed an inflammatory phenotype. Deletion of Ahr in myeloid cells or pharmacologic inhibition of AhR reduced PDAC growth, improved efficacy of immune checkpoint blockade, and increased intra-tumoral frequencies of IFNγ+CD8+ T cells. Macrophage tryptophan metabolism was not required for this effect. Rather, macrophage AhR activity was dependent on Lactobacillus metabolization of dietary tryptophan to indoles. Removal of dietary tryptophan reduced TAM AhR activity and promoted intra-tumoral accumulation of TNFα+IFNγ+CD8+ T cells; provision of dietary indoles blocked this effect. In patients with PDAC, high AHR expression associated with rapid disease progression and mortality, as well as with an immune-suppressive TAM phenotype, suggesting conservation of this regulatory axis in human disease.


Asunto(s)
Tolerancia Inmunológica/inmunología , Receptores de Hidrocarburo de Aril/inmunología , Triptófano/inmunología , Macrófagos Asociados a Tumores/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Humanos , Indoles/inmunología , Indoles/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Microbiota/inmunología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Pronóstico , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/metabolismo
5.
Nature ; 615(7950): 73-79, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36813959

RESUMEN

Avoiding excessive agricultural nitrogen (N) use without compromising yields has long been a priority for both research and government policy in China1,2. Although numerous rice-related strategies have been proposed3-5, few studies have assessed their impacts on national food self-sufficiency and environmental sustainability and fewer still have considered economic risks faced by millions of smallholders. Here we established an optimal N rate strategy based on maximizing either economic (ON) or ecological (EON) performance using new subregion-specific models. Using an extensive on-farm dataset, we then assessed the risk of yield losses among smallholder farmers and the challenges of implementing the optimal N rate strategy. We find that meeting national rice production targets in 2030 is possible while concurrently reducing nationwide N consumption by 10% (6-16%) and 27% (22-32%), mitigating reactive N (Nr) losses by 7% (3-13%) and 24% (19-28%) and increasing N-use efficiency by 30% (3-57%) and 36% (8-64%) for ON and EON, respectively. This study identifies and targets subregions with disproportionate environmental impacts and proposes N rate strategies to limit national Nr pollution below proposed environmental thresholds, without compromising soil N stocks or economic benefits for smallholders. Thereafter, the preferable N strategy is allocated to each region based on the trade-off between economic risk and environmental benefit. To facilitate the adoption of the annually revised subregional N rate strategy, several recommendations were provided, including a monitoring network, fertilization quotas and smallholder subsidies.


Asunto(s)
Agricultura , Productos Agrícolas , Ambientalismo , Nitrógeno , Oryza , Desarrollo Sostenible , Agricultura/economía , Agricultura/métodos , China , Fertilizantes/análisis , Fertilizantes/economía , Nitrógeno/análisis , Nitrógeno/economía , Nitrógeno/metabolismo , Oryza/metabolismo , Suelo/química , Productos Agrícolas/economía , Productos Agrícolas/metabolismo , Productos Agrícolas/provisión & distribución , Ecología , Agricultores , Conjuntos de Datos como Asunto , Abastecimiento de Alimentos
6.
Nature ; 617(7962): 792-797, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35728625

RESUMEN

In mice, only the zygotes and blastomeres from 2-cell embryos are authentic totipotent stem cells (TotiSCs) capable of producing all the differentiated cells in both embryonic and extraembryonic tissues and forming an entire organism1. However, it remains unknown whether and how totipotent stem cells can be established in vitro in the absence of germline cells. Here we demonstrate the induction and long-term maintenance of TotiSCs from mouse pluripotent stem cells using a combination of three small molecules: the retinoic acid analogue TTNPB, 1-azakenpaullone and the kinase blocker WS6. The resulting chemically induced totipotent stem cells (ciTotiSCs), resembled mouse totipotent 2-cell embryo cells at the transcriptome, epigenome and metabolome levels. In addition, ciTotiSCs exhibited bidirectional developmental potentials and were able to produce both embryonic and extraembryonic cells in vitro and in teratoma. Furthermore, following injection into 8-cell embryos, ciTotiSCs contributed to both embryonic and extraembryonic lineages with high efficiency. Our chemical approach to totipotent stem cell induction and maintenance provides a defined in vitro system for manipulating and developing understanding of the totipotent state and the development of multicellular organisms from non-germline cells.


Asunto(s)
Células Madre Totipotentes , Animales , Ratones , Blastómeros , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Totipotentes/citología , Células Madre Totipotentes/efectos de los fármacos , Teratoma/patología , Linaje de la Célula/efectos de los fármacos
7.
Annu Rev Biochem ; 82: 693-721, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23414305

RESUMEN

The signal recognition particle (SRP) and its receptor compose a universally conserved and essential cellular machinery that couples the synthesis of nascent proteins to their proper membrane localization. The past decade has witnessed an explosion in in-depth mechanistic investigations of this targeting machine at increasingly higher resolutions. In this review, we summarize recent work that elucidates how the SRP and SRP receptor interact with the cargo protein and the target membrane, respectively, and how these interactions are coupled to a novel GTPase cycle in the SRP·SRP receptor complex to provide the driving force and enhance the fidelity of this fundamental cellular pathway. We also discuss emerging frontiers in which important questions remain to be addressed.


Asunto(s)
Membrana Celular/metabolismo , GTP Fosfohidrolasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Humanos , Mamíferos , Unión Proteica , Transporte de Proteínas , Transducción de Señal
8.
Trends Biochem Sci ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39034215

RESUMEN

Intracellular biomolecular condensates, which form via phase separation, display a highly organized ultrastructure and complex properties. Recent advances in optical imaging techniques, including super-resolution microscopy and innovative microscopic methods that leverage the intrinsic properties of the molecules observed, have transcended the limitations of conventional microscopies. These advances facilitate the exploration of condensates at finer scales and in greater detail. The deployment of these emerging but sophisticated imaging tools allows for precise observations of the multiphasic organization and physicochemical properties of these condensates, shedding light on their functions in cellular processes. In this review, we highlight recent progress in methodological innovations and their profound implications for understanding the organization and dynamics of intracellular biomolecular condensates.

9.
Nature ; 604(7905): 298-303, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35158370

RESUMEN

Achiral sulfur functional groups, such as sulfonamide, sulfone, thiol and thioether, are common in drugs and natural products. By contrast, chiral sulfur functional groups are often neglected as pharmacophores1-3, although sulfoximine, with its unique physicochemical and pharmacokinetic properties4,5, has been recently incorporated into several clinical candidates. Thus, other sulfur stereogenic centres, such as sulfinate ester, sulfinamide, sulfonimidate ester and sulfonimidamide, have started to attract attention. The diversity and complexity of these sulfur stereogenic centres have the potential to expand the chemical space for drug discovery6-10. However, the installation of these structures enantioselectively into drug molecules is highly challenging. Here we report straightforward access to enantioenriched sulfinate esters via asymmetric condensation of prochiral sulfinates and alcohols using pentanidium as an organocatalyst. We successfully coupled a wide range of sulfinates and bioactive alcohols stereoselectively. The initial sulfinates can be prepared from existing sulfone and sulfonamide drugs, and the resulting sulfinate esters are versatile for transformations to diverse chiral sulfur pharmacophores. Through late-stage diversification11,12 of celecoxib and other drug derivatives, we demonstrate the viability of this unified approach towards sulfur stereogenic centres.

10.
Nature ; 608(7923): 513-517, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35978124

RESUMEN

High pressure induces dramatic changes and novel phenomena in condensed volatiles1,2 that are usually not preserved after recovery from pressure vessels. Here we report a process that pressurizes volatiles into nanopores of type 1 glassy carbon precursors, converts glassy carbon into nanocrystalline diamond by heating and synthesizes free-standing nanostructured diamond capsules (NDCs) capable of permanently preserving volatiles at high pressures, even after release back to ambient conditions for various vacuum-based diagnostic probes including electron microscopy. As a demonstration, we perform a comprehensive study of a high-pressure argon sample preserved in NDCs. Synchrotron X-ray diffraction and high-resolution transmission electron microscopy show nanometre-sized argon crystals at around 22.0 gigapascals embedded in nanocrystalline diamond, energy-dispersive X­ray spectroscopy provides quantitative compositional analysis and electron energy-loss spectroscopy details the chemical bonding nature of high-pressure argon. The preserved pressure of the argon sample inside NDCs can be tuned by controlling NDC synthesis pressure. To test the general applicability of the NDC process, we show that high-pressure neon can also be trapped in NDCs and that type 2 glassy carbon can be used as the precursor container material. Further experiments on other volatiles and carbon allotropes open the possibility of bringing high-pressure explorations on a par with mainstream condensed-matter investigations and applications.

11.
Mol Cell ; 80(3): 485-500.e7, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33027691

RESUMEN

Peptide drugs targeting class B1 G-protein-coupled receptors (GPCRs) can treat multiple diseases; however, there remains substantial interest in the development of orally delivered non-peptide drugs. Here, we reveal unexpected overlap between signaling and regulation of the glucagon-like peptide-1 (GLP-1) receptor by the non-peptide agonist PF 06882961 and GLP-1 that was not observed for another compound, CHU-128. Compounds from these patent series, including PF 06882961, are currently in clinical trials for treatment of type 2 diabetes. High-resolution cryoelectron microscopy (cryo-EM) structures reveal that the binding sites for PF 06882961 and GLP-1 substantially overlap, whereas CHU-128 adopts a unique binding mode with a more open receptor conformation at the extracellular face. Structural differences involving extensive water-mediated hydrogen bond networks could be correlated to functional data to understand how PF 06882961, but not CHU-128, can closely mimic the pharmacological properties of GLP-1. These findings will facilitate rational structure-based discovery of non-peptide agonists targeting class B GPCRs.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Animales , Sitios de Unión/fisiología , Microscopía por Crioelectrón/métodos , Péptido 1 Similar al Glucagón/química , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/química , Humanos , Péptidos/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
12.
EMBO J ; 42(12): e112514, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36946144

RESUMEN

Increasing evidence has shown that light exists in a diverse range of deep-sea environments. We unexpectedly found that blue light is necessary to produce excess zero-valent sulfur (ZVS) in Erythrobacter flavus 21-3, a bacterium that has been recently isolated from a deep-sea cold seep. E. flavus 21-3 is able to convert thiosulfate to ZVS using a novel thiosulfate oxidation pathway comprising a thiosulfate dehydrogenase (TsdA) and a thiosulfohydrolase (SoxB). Using proteomic, bacterial two-hybrid and heterologous expression assays, we found that the light-oxygen-voltage histidine kinase LOV-1477 responds to blue light and activates the diguanylate cyclase DGC-2902 to produce c-di-GMP. Subsequently, the PilZ domain-containing protein mPilZ-1753 binds to c-di-GMP and activates TsdA through direct interaction. Finally, Raman spectroscopy and gene knockout results verified that TsdA and two SoxB homologs cooperate to regulate ZVS production. As ZVS is an energy source for E. flavus 21-3, we propose that deep-sea blue light provides E. flavus 21-3 with a selective advantage in the cold seep, suggesting a previously unappreciated relationship between light-sensing pathways and sulfur metabolism in a deep-sea microorganism.


Asunto(s)
Proteómica , Tiosulfatos , Tiosulfatos/metabolismo , Bacterias/metabolismo , Oxidación-Reducción , Azufre/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
13.
Plant Cell ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38299372

RESUMEN

Alternative complex III (ACIII) couples quinol oxidation and electron acceptor reduction with potential transmembrane proton translocation. It is compositionally and structurally different from the cytochrome bc1/b6f complexes, but functionally replaces these enzymes in the photosynthetic and/or respiratory electron transport chains (ETCs) of many bacteria. However, the true compositions and architectures of ACIIIs remain unclear, as do their structural and functional relevance in mediating the ETCs. We here determined cryogenic electron microscopy structures of photosynthetic ACIII isolated from Chloroflexus aurantiacus (CaACIIIp), in apo-form and in complexed form bound to a menadiol analog 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Besides six canonical subunits (ActABCDEF), the structures revealed conformations of two previously unresolved subunits, ActG and I, which contributed to the complex stability. We also elucidated the structural basis of menaquinol oxidation and subsequent electron transfer along the [3Fe-4S]-6 hemes wire to its periplasmic electron acceptors, using electron paramagnetic resonance (EPR), spectroelectrochemistry, enzymatic analyses and molecular dynamics (MD) simulations. A unique insertion loop in ActE was shown to function in determining the binding specificity of CaACIIIp for downstream electron acceptors. This study broadens our understanding of the structural diversity and molecular evolution of ACIIIs, enabling further investigation of the (mena)quinol oxidoreductases evolved coupling mechanism in bacterial energy conservation.

14.
Plant Cell ; 36(5): 1892-1912, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38262703

RESUMEN

In cereal grains, starch is synthesized by the concerted actions of multiple enzymes on the surface of starch granules within the amyloplast. However, little is known about how starch-synthesizing enzymes access starch granules, especially for amylopectin biosynthesis. Here, we show that the rice (Oryza sativa) floury endosperm9 (flo9) mutant is defective in amylopectin biosynthesis, leading to grains exhibiting a floury endosperm with a hollow core. Molecular cloning revealed that FLO9 encodes a plant-specific protein homologous to Arabidopsis (Arabidopsis thaliana) LIKE EARLY STARVATION1 (LESV). Unlike Arabidopsis LESV, which is involved in starch metabolism in leaves, OsLESV is required for starch granule initiation in the endosperm. OsLESV can directly bind to starch by its C-terminal tryptophan (Trp)-rich region. Cellular and biochemical evidence suggests that OsLESV interacts with the starch-binding protein FLO6, and loss-of-function mutations of either gene impair ISOAMYLASE1 (ISA1) targeting to starch granules. Genetically, OsLESV acts synergistically with FLO6 to regulate starch biosynthesis and endosperm development. Together, our results identify OsLESV-FLO6 as a non-enzymatic molecular module responsible for ISA1 localization on starch granules, and present a target gene for use in biotechnology to control starch content and composition in rice endosperm.


Asunto(s)
Endospermo , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Almidón , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Endospermo/metabolismo , Endospermo/genética , Almidón/metabolismo , Almidón/biosíntesis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Amilopectina/metabolismo , Mutación , Plantas Modificadas Genéticamente
15.
Plant Cell ; 36(5): 2000-2020, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299379

RESUMEN

The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.


Asunto(s)
Quitina , Flores , Hypocreales , Oryza , Enfermedades de las Plantas , Oryza/microbiología , Oryza/metabolismo , Oryza/genética , Enfermedades de las Plantas/microbiología , Quitina/metabolismo , Flores/microbiología , Hypocreales/patogenicidad , Hypocreales/genética , Hypocreales/metabolismo , Transducción de Señal , Interacciones Huésped-Patógeno , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Virulencia , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
16.
Nature ; 598(7882): 590-596, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34671167

RESUMEN

Although solid-state lithium (Li)-metal batteries promise both high energy density and safety, existing solid ion conductors fail to satisfy the rigorous requirements of battery operations. Inorganic ion conductors allow fast ion transport, but their rigid and brittle nature prevents good interfacial contact with electrodes. Conversely, polymer ion conductors that are Li-metal-stable usually provide better interfacial compatibility and mechanical tolerance, but typically suffer from inferior ionic conductivity owing to the coupling of the ion transport with the motion of the polymer chains1-3. Here we report a general strategy for achieving high-performance solid polymer ion conductors by engineering of molecular channels. Through the coordination of copper ions (Cu2+) with one-dimensional cellulose nanofibrils, we show that the opening of molecular channels within the normally ion-insulating cellulose enables rapid transport of Li+ ions along the polymer chains. In addition to high Li+ conductivity (1.5 × 10-3 siemens per centimetre at room temperature along the molecular chain direction), the Cu2+-coordinated cellulose ion conductor also exhibits a high transference number (0.78, compared with 0.2-0.5 in other polymers2) and a wide window of electrochemical stability (0-4.5 volts) that can accommodate both the Li-metal anode and high-voltage cathodes. This one-dimensional ion conductor also allows ion percolation in thick LiFePO4 solid-state cathodes for application in batteries with a high energy density. Furthermore, we have verified the universality of this molecular-channel engineering approach with other polymers and cations, achieving similarly high conductivities, with implications that could go beyond safe, high-performance solid-state batteries.

17.
Nature ; 595(7868): 521-525, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34290425

RESUMEN

Whereas ferromagnets have been known and used for millennia, antiferromagnets were only discovered in the 1930s1. At large scale, because of the absence of global magnetization, antiferromagnets may seem to behave like any non-magnetic material. At the microscopic level, however, the opposite alignment of spins forms a rich internal structure. In topological antiferromagnets, this internal structure leads to the possibility that the property known as the Berry phase can acquire distinct spatial textures2,3. Here we study this possibility in an antiferromagnetic axion insulator-even-layered, two-dimensional MnBi2Te4-in which spatial degrees of freedom correspond to different layers. We observe a type of Hall effect-the layer Hall effect-in which electrons from the top and bottom layers spontaneously deflect in opposite directions. Specifically, under zero electric field, even-layered MnBi2Te4 shows no anomalous Hall effect. However, applying an electric field leads to the emergence of a large, layer-polarized anomalous Hall effect of about 0.5e2/h (where e is the electron charge and h is Planck's constant). This layer Hall effect uncovers an unusual layer-locked Berry curvature, which serves to characterize the axion insulator state. Moreover, we find that the layer-locked Berry curvature can be manipulated by the axion field formed from the dot product of the electric and magnetic field vectors. Our results offer new pathways to detect and manipulate the internal spatial structure of fully compensated topological antiferromagnets4-9. The layer-locked Berry curvature represents a first step towards spatial engineering of the Berry phase through effects such as layer-specific moiré potential.

18.
Nature ; 590(7845): 320-325, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33260195

RESUMEN

The expanding pandemic of coronavirus disease 2019 (COVID-19) requires the development of safe, efficacious and fast-acting vaccines. Several vaccine platforms are being leveraged for a rapid emergency response1. Here we describe the development of a candidate vaccine (YF-S0) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses live-attenuated yellow fever 17D (YF17D) vaccine as a vector to express a noncleavable prefusion form of the SARS-CoV-2 spike antigen. We assess vaccine safety, immunogenicity and efficacy in several animal models. YF-S0 has an excellent safety profile and induces high levels of SARS-CoV-2 neutralizing antibodies in hamsters (Mesocricetus auratus), mice (Mus musculus) and cynomolgus macaques (Macaca fascicularis), and-concomitantly-protective immunity against yellow fever virus. Humoral immunity is complemented by a cellular immune response with favourable T helper 1 polarization, as profiled in mice. In a hamster model2 and in macaques, YF-S0 prevents infection with SARS-CoV-2. Moreover, a single dose conferred protection from lung disease in most of the vaccinated hamsters within as little as 10 days. Taken together, the quality of the immune responses triggered and the rapid kinetics by which protective immunity can be attained after a single dose warrant further development of this potent SARS-CoV-2 vaccine candidate.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vectores Genéticos/genética , SARS-CoV-2/inmunología , Vacunas Atenuadas/inmunología , Vacuna contra la Fiebre Amarilla/genética , Animales , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/genética , Cricetinae , Modelos Animales de Enfermedad , Femenino , Glicosilación , Macaca fascicularis/genética , Macaca fascicularis/inmunología , Macaca fascicularis/virología , Masculino , Mesocricetus/genética , Mesocricetus/inmunología , Mesocricetus/virología , Ratones , Seguridad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/genética
19.
Semin Immunol ; 70: 101833, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37647772

RESUMEN

The identification of gasdermin as the executor of pyroptosis has opened new avenues for the study of this process. Although pyroptosis research has mainly focused on immune cells since it was discovered three decades ago, accumulating evidence suggests that pyroptosis plays crucial roles in many biological processes. One example is the discovery of gasdermin-mediated cancer cell pyroptosis (CCP) which has become an important and frontier field in oncology. Recent studies have shown that CCP induction can heat tumor microenvironment (TME) and thereby elicit the robust anti-tumor immunity to suppress tumor growth. As a newly discovered form of tumor cell death, CCP offers promising opportunities for improving tumor treatment and developing new drugs. Nevertheless, the research on CCP is still in its infancy, and the molecular mechanisms underlying the expression, regulation and activation of gasdermins are not yet fully understood. In this review, we summarize the recent progress of gasdermin research in cancer area, and propose that the anti-tumor effect of immune cell pyroptosis (ICP) and CCP depends on their duration, intensity, and the type of cells undergoing pyroptosis within TME.


Asunto(s)
Gasderminas , Neoplasias , Humanos , Neoplasias/terapia , Carcinogénesis , Microambiente Tumoral , Piroptosis
20.
Proc Natl Acad Sci U S A ; 121(30): e2401452121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39018193

RESUMEN

Nitrophenols present on the surface of particulates are ubiquitous in the atmosphere. However, its atmospheric photochemical transformation pathway remains unknown, for which the crucial effect of visible light is largely overlooked, resulting in an incomplete understanding of the effects of nitrophenols in the atmospheric environment. This study delves into the photolysis mechanism of 4-nitrophenol (4NP), one of the most abundant atmospheric nitrophenol compounds, on the surface of photoactive particulates under visible light irradiation. Unexpectedly, the nonradical species (singlet oxygen, 1O2) was identified as a dominant factor in driving the visible photolysis of 4NP. The pathways of HONO and p-benzoquinone (C6H4O2) generation were clarified by acquiring direct evidence of C-N and O-H bond breakage in the nitro (-NO2) and hydroxyl (-OH) groups of 4NP. The further decomposition of HONO results in the generation of NO and hydroxyl radicals, which could directly contribute to atmospheric oxidizing capacity and complicate the PM2.5 composition. Significantly, the behavior of 1O2-induced visible photolysis of 4NP was universal on the surface of common particulates in the atmosphere, such as A1 dust and Fe2O3. This work advances the understanding of the photochemical transformation mechanism of particulate-phase atmospheric nitrophenols, which is indispensable in elucidating the role of nitrophenols in atmospheric chemistry.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda