Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Am Chem Soc ; 145(14): 7810-7819, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37002870

RESUMEN

Chiral mesoporous silica (mSiO2) nanomaterials have gained significant attention during the past two decades. Most of them show a topologically characteristic helix; however, little attention has been paid to the molecular-scale chirality of mSiO2 frameworks. Herein, we report a chiral amide-gel-directed synthesis strategy for the fabrication of chiral mSiO2 nanospheres with molecular-scale-like chirality in the silicate skeletons. The functionalization of micelles with the chiral amide gels via electrostatic interactions realizes the growth of molecular configuration chiral silica sols. Subsequent modular self-assembly results in the formation of dendritic large mesoporous silica nanospheres with molecular chirality of the silica frameworks. As a result, the resultant chiral mSiO2 nanospheres show abundant large mesopores (∼10.1 nm), high pore volumes (∼1.8 cm3·g-1), high surface areas (∼525 m2·g-1), and evident CD activity. The successful transfer of the chirality from the chiral amide gels to composited micelles and further to asymmetric silica polymeric frameworks based on modular self-assembly leads to the presence of molecular chirality in the final products. The chiral mSiO2 frameworks display a good chiral stability after a high-temperature calcination (even up to 1000 °C). The chiral mSiO2 can impart a notable decline in ß-amyloid protein (Aß42) aggregation formation up to 79%, leading to significant mitigation of Aß42-induced cytotoxicity on the human neuroblastoma line SH-ST5Y cells in vitro. This finding opens a new avenue to construct the molecular chirality configuration in nanomaterials for optical and biomedical applications.


Asunto(s)
Enfermedad de Alzheimer , Nanosferas , Humanos , Nanosferas/química , Péptidos beta-Amiloides , Dióxido de Silicio/química , Micelas , Geles , Amidas
2.
Small ; 19(28): e2301203, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37010007

RESUMEN

Hard carbons (HCs) with high sloping capacity are considered as the leading candidate anode for sodium-ion batteries (SIBs); nevertheless, achieving basically complete slope-dominated behavior with high rate capability is still a big challenge. Herein, the synthesis of mesoporous carbon nanospheres with highly disordered graphitic domains and MoC nanodots modification via a surface stretching strategy is reported. The MoOx surface coordination layer inhibits the graphitization process at high temperature, thus creating short and wide graphite domains. Meanwhile, the in situ formed MoC nanodots can greatly promote the conductivity of highly disordered carbon. Consequently, MoC@MCNs exhibit an outstanding rate capacity (125 mAh g-1 at 50 A g-1 ). The "adsorption-filling" mechanism combined with excellent kinetics is also studied based on the short-range graphitic domains to reveal the enhanced slope-dominated capacity. The insight in this work encourages the design of HC anodes with dominated slope capacity toward high-performance SIBs.

3.
J Am Chem Soc ; 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33141579

RESUMEN

Bending and folding are important stereoscopic geometry parameters of one-dimensional (1D) nanomaterials, yet the precise control of them has remained a great challenge. Herein, a surface-confined winding assembly strategy is demonstrated to regulate the stereoscopic architecture of uniform 1D mesoporous SiO2 (mSiO2) nanorods. Based on this brand-new strategy, the 1D mSiO2 nanorods can wind on the surface of 3D premade nanoparticles (sphere, cube, hexagon disk, spindle, rod, etc.) and inherit their surface topological structures. Therefore, the mSiO2 nanorods with a diameter of ∼50 nm and a variable length can be bent into arc shapes with variable radii and radians, as well as folded into 60, 90, 120, and 180° angular convex corners with controllable folding times. Additionally, in contrast to conventional core@shell structures, this winding structure induces partial exposure and accessibility of the premade nanoparticles. The functional nanoparticles can exhibit large accessible surface and efficient energy exchanges with the surroundings. As a proof of concept, winding-structured CuS&mSiO2 nanocomposites are fabricated, which are made up of a 100 nm CuS nanosphere and the 1D mSiO2 nanorods with a diameter of ∼50 nm winding the nanosphere in the perimeter. The winding structured nanocomposites are demonstrated to have fourfold photoacoustic imaging intensity compared with the conventional core@shell nanostructure with an inaccessible core because of the greatly enhanced photothermal conversion efficiency (increased by ∼30%). Overall, our work paves the way to the design and synthesis of 1D nanomaterials with controllable bending and folding, as well as the formation of high-performance complex nanocomposites.

4.
Angew Chem Int Ed Engl ; 59(8): 3287-3293, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-31821658

RESUMEN

A universal sequential synthesis strategy in aqueous solution is presented for highly uniform core-shell structured photocatalysts, which consist of a metal sulfide light absorber core and a metal sulfide co-catalyst shell. We show that the sequential chemistry can drive the formation of unique core-shell structures controlled by the constant of solubility product of metal sulfides. A variety of metal sulfide core-shell structures have been demonstrated, including CdS@CoSx , CdS@MnSx , CdS@NiSx , CdS@ZnSx , CuS@CdS, and more complexed CdS@ZnSx @CoSx . The obtained strawberry-like CdS@CoSx core-shell structures exhibit a high photocatalytic H2 production activity of 3.92 mmol h-1 and an impressive apparent quantum efficiency of 67.3 % at 420 nm, which is much better than that of pure CdS nanoballs (0.28 mmol h-1 ), CdS/CoSx composites (0.57 mmol h-1 ), and 5 %wt Pt-loaded CdS photocatalysts (1.84 mmol h-1 ).

5.
J Am Chem Soc ; 141(17): 7073-7080, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30964289

RESUMEN

Functional mesoporous carbons have attracted significant scientific and technological interest owning to their fascinating and excellent properties. However, controlled synthesis of functional mesoporous carbons with large tunable pore sizes, small particle size, well-designed functionalities, and uniform morphology is still a great challenge. Herein, we report a versatile nanoemulsion assembly approach to prepare N-doped mesoporous carbon nanospheres with high uniformity and large tunable pore sizes (5-37 nm). We show that the organic molecules (e.g., 1,3,5-trimethylbenzene, TMB) not only play an important role in the evolution of pore sizes but also significantly affect the interfacial interaction between soft templates and carbon precursors. As a result, a well-defined Pluronic F127/TMB/dopamine nanoemulsion can be facilely obtained in the ethanol/water system, which directs the polymerization of dopamine into highly uniform polymer nanospheres and their derived N-doped carbon nanospheres with diversely novel structures such as smooth, golf ball, multichambered, and dendritic nanospheres. The resultant uniform dendritic mesoporous carbon nanospheres show an ultralarge pore size (∼37 nm), small particle size (∼128 nm), high surface area (∼635 m2 g-1), and abundant N content (∼6.8 wt %), which deliver high current density and excellent durability toward oxygen reduction reaction in alkaline solution.

6.
Nanotechnology ; 28(11): 115704, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28205507

RESUMEN

Ni@C composites, which simultaneously possess porous, core-shell and 1D nanostructures have been synthesized with a facile self-template strategy. The precursors were obtained by a hydrothermal process using NiCl2 · 6H2O and nitrilotriacetic acid as the starting material and then annealed at 400 °C, 500 °C, and 600 °C. The Ni@C composites annealed at 500 °C display a nanorod feature with a length of ∼3 µm and diameter of 230-500 nm. In addition, about 3 nm carbon shells and 4 nm Ni cores can be found in Ni@C nanorods. Attributed to the interconnected mesoporous texture in nanorods, strengthened interfacial polarization from core-shell structure, and better impedance matching benefiting from a great deal of pores, Ni@C nanorod composites exhibit perfect microwave absorption performance. The minimum reflection loss (RL) value of -26.3 dB can be gained at 10.8 GHz with a thickness of 2.3 mm. Moreover, the effective bandwidth (RL ≤ -10 dB) can be achieved, 5.2 GHz (12.24-17.4 GHz) under an absorber thickness of 1.8 mm, indicating its great potential in the microwave absorption field. Considering this technique is facile and effective, our study may provide a good reference for the synthesis of 1D carbon-based microwave absorbers with core-shell nanostructure.

7.
Phys Chem Chem Phys ; 17(12): 8078-86, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25728386

RESUMEN

Hollow hierarchical microspheres of Bi/BiOBr (SBB) with oxygen vacancies were prepared using a one step solvothermal method. It was found that the stannous chloride dihydrate played key roles in the formation of Bi, defects and the stacking mode of hierarchical construction units. Positron annihilation lifetime spectroscopy (PALS) was used to demonstrate the oxygen vacancies in Bi/BiOBr samples. The density of states (DOS) of the valence band of BiOBr can be modulated by the introduction of oxygen vacancies according to the valence band XPS and Density Functional Theory (DFT) calculations. Analyses of photoluminescence and BET demonstrated that SBB hollow hierarchical microspheres with higher specific surface area have a lower recombination rate of photo-generated electrons and holes. The photocatalytic and adsorptive performances showed that the samples exhibited stronger adsorption capacity toward rhodamine B (RhB) and highly efficient photocatalytic activity in the degradation of RhB, which were attributed to the higher adsorption ability and synergistic effect of oxygen vacancies and construction of the heterojunction structure (Bi/BiOBr).

8.
Natl Sci Rev ; 11(4): nwae054, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38545447

RESUMEN

Due to their uncontrollable assembly and crystallization process, the synthesis of mesoporous metal oxide single crystals remains a formidable challenge. Herein, we report the synthesis of single-crystal-like mesoporous Li2TiSiO5 by using soft micelles as templates. The key lies in the atomic-scale self-assembly and step-crystallization processes, which ensure the formation of single-crystal-like mesoporous Li2TiSiO5 microparticles via an oriented attachment growth mechanism under the confinement of an in-situ formed carbon matrix. The mesoporous Li2TiSiO5 anode achieves a superior rate capability (148 mAh g-1 at 5.0 A g-1) and outstanding long-term cycling stability (138 mAh g-1 after 3000 cycles at 2.0 A g-1) for lithium storage as a result of the ultrafast Li+ diffusion caused by penetrating mesochannels and nanosized crystal frameworks (5-10 nm). In comparison, bulk Li2TiSiO5 exhibits poor rate capability and cycle performance due to micron-scale diffusion lengths. This method is very simple and reproducible, heralding a new way of designing and synthesizing mesoporous single crystals with controllable frameworks and chemical functionalities.

9.
Adv Mater ; 34(28): e2202873, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35526099

RESUMEN

Sodium-ion batteries (SIBs) are a promising candidate for grid-scale energy storage, however, the sluggish ion-diffusion kinetics brought by the large radius of Na+ seriously limits the performance of SIBs, let alone at low temperatures. Herein, a confined acid-base pair self-assembly strategy to synthesize unusual Ti0.88 Nb0.88 O4- x @C for high-performance SIBs operating at room and low temperatures is proposed. The confinement self-assembly of the acid-base pair around the micelles and confined crystallization by the carbon layer realize the formation of ordered and stoichiometric mesoporous frameworks with opened ion channels. Thus, the mesoporous Ti0.88 Nb0.88 O4- x @C exhibits rapid Na+ diffusion kinetics at 25 and -40 °C, which are one order higher than that of the nonporous one. A high reversible capacity of 233 mAh g-1 , excellent rate (a specific capacity of 103 mAh g-1 at 50 C), and cycling performances (<0.03% fading per cycle) can be observed at 25 °C. More importantly, even at -40 °C, the mesoporous Ti0.88 Nb0.88 O4- x @C can still deliver the 161 mAh g-1 capacity, a high initial Coulombic efficiency of 60% and outstanding cycling stability (99 mAh g-1 at 0.5 C after 500 cycles). It is believed this strategy opens a new avenue for constructing novel mesoporous electrode materials for low-temperature energy storage.

10.
Sci Adv ; 8(19): eabo0283, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35559684

RESUMEN

Manipulating the super-assembly of polymeric building blocks still remains a great challenge due to their thermodynamic instability. Here, we report on a type of three-dimensional hierarchical core-satellite SiO2@monomicelle spherical superstructures via a previously unexplored monomicelle interfacial super-assembly route. Notably, in this superstructure, an ultrathin single layer of monomicelle subunits (~18 nm) appears in a typically hexagon-like regular discontinuous distribution (adjacent micelle distance of ~30 nm) on solid spherical interfaces (SiO2), which is difficult to achieve by conventional super-assembled methods. Besides, the number of the monomicelles on colloidal SiO2 interfaces can be quantitatively controlled (from 76 to 180). This quantitative control can be precisely manipulated by tuning the interparticle electrostatic interactions (the intermicellar electrostatic repulsion and electrostatic attractions between the monomicelle units and the SiO2 substrate). This monomicelle interfacial super-assembly strategy will enable a controllable way for building multiscale hierarchical regular micro- and/or macroscale materials and devices.

11.
ACS Nano ; 15(4): 7713-7721, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33821624

RESUMEN

Two-dimensional carbon materials, incorporating a large mesoporosity, are attracting considerable research interest in various fields such as catalysis, electrochemistry, and energy-related technologies owing to their integrated functionalities. However, their potential applications, which require favorable mass transport within mesopore channels, are constrained by the undesirable and finite mesostructural configurations due to the immense synthetic difficulties. Herein, we demonstrate an oriented monomicelle assembly strategy, for the facile fabrication of highly ordered mesoporous carbon thin films with vertically aligned and permeable mesopore channels. Such a facile and reproducible approach relies on the swelling and fusion effect of hydrophobic benzene homologues for directional monomicelle assembly. The orientation assembly process shows precise controllability and great universality, affording mesoporous carbon films with a cracking-free structure over a centimeter in size, highly tunable thicknesses (13 to 85 nm, an interval of ∼12 nm), mesopore size (8.4 to 13.5 nm), and switchable growth substrates. Owing to their large permeable mesopore channels, electrochemical sensors based on vertical mesoporous carbon films exhibit an ultralow limit of detection (50 nmol L-1) and great sensitivity in dopamine detection.

12.
Adv Mater ; 33(23): e2100820, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33914372

RESUMEN

Ultrafine nanoparticles with organic-inorganic hybridization have essential roles in myriad applications. Over the past three decades, although various efforts on the formation of organic or inorganic ultrasmall nanoparticles have been made, ultrafine organic-inorganic hybrid nanoparticles have scarcely been achieved. Herein, a family of ultrasmall hybrid nanoparticles with a monodisperse, uniform size is synthesized by a facile thermo-kinetics-mediated copolymer monomicelle approach. These thermo-kinetics-mediated monomicelles with amphiphilic ABC triblock copolymers are structurally robust due to their solidified polystyrene core, endowing them with ultrahigh thermodynamic stability, which is difficult to achieve using Pluronic surfactant-based micelles (e.g., F127). This great stability combined with a core-shell-corona structure makes the monodispersed monomicelles a robust template for the precise synthesis of ultrasmall hybrid nanoparticles with a highly uniform size. As a demonstration, the obtained micelles/SiO2 hybrid nanoparticles display ultrafine sizes, excellent uniformity, monodispersity, and tunable structural parameters (diameters: 24-47 nm and thin shell thickness: 2.0-4.0 nm). Notably, this approach is universal for creating a variety of multifunctional ultrasmall hybrid nanostructures, involving organic/organic micelle/polymers (polydopamine) nanoparticles, organic/inorganic micelle/metal oxides (ZnO, TiO2 , Fe2 O3 ), micelle/hydroxides (Co(OH)2 ), micelle/noble metals (Ag), and micelle/TiO2 /SiO2 hybrid composites. As a proof of concept, the ultrasmall micelle/SiO2 hybrid nanoparticles demonstrate superior toughness as biomimetic materials.

13.
Nat Commun ; 12(1): 2973, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34016965

RESUMEN

The gradient-structure is ideal nanostructure for conversion-type anodes with drastic volume change. Here, we demonstrate an inorganic-organic competitive coating strategy for constructing gradient-structured ferroferric oxide-carbon nanospheres, in which the deposition of ferroferric oxide nanoparticles and polymerization of carbonaceous species are competitive and well controlled by the reaction thermodynamics. The synthesized gradient-structure with a uniform size of ~420 nm consists of the ferroferric oxide nanoparticles (4-8 nm) in carbon matrix, which are aggregated into the inner layer (~15 nm) with high-to-low component distribution from inside to out, and an amorphous carbon layer (~20 nm). As an anode material, the volume change of the gradient-structured ferroferric oxide-carbon nanospheres can be limited to ~22% with ~7% radial expansion, thus resulting in stable reversible specific capacities of ~750 mAh g-1 after ultra-long cycling of 10,000 cycles under ultra-fast rate of 10 A g-1. This unique inorganic-organic competitive coating strategy bring inspiration for nanostructure design of functional materials in energy storage.

14.
J Colloid Interface Sci ; 450: 381-387, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25854505

RESUMEN

The pencil-like ZnO hollow tubes with 9-12 µm in length, 350-700 nm in width, 200 nm in wall thickness coating with g-C3N4 have been prepared via a chemical deposition process. As compared with uncoated ZnO or g-C3N4, these g-C3N4/ZnO composites showed the enhanced photocatalytic activity which can be attributed to the heterojunction structure. Furthermore, it is worth pointing out that the weight ratios of g-C3N4 to ZnO (g-C3N4/ZnO) played a significantly influence on the photodegradable properties. With increasing the mass ratio, the photocatalytic activity increased firstly and then decreased after reaching to an optimal photocatalytic performance. It can be inferred that the appreciation of g-C3N4 on the ZnO surface can improve the contact area which resulted in high separation of electrons and holes. However, excessive g-C3N4 may hinder the electrons transferring from the g-C3N4 to ZnO, and thus worse its photocatalytic performance. In our study, the g-C3N4/ZnO sample prepared with 10 wt% of g-C3N4 exhibited the optimal photodegradable efficiency which 94% of Rhodamine B (RhB) has been degraded just in 2 h.

15.
Nanoscale ; 7(30): 12932-42, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26167763

RESUMEN

A novel FeCo nanoparticle embedded nanoporous carbon composite (Fe-Co/NPC) was synthesized via in situ carbonization of dehydro-ascorbic acid (DHAA) coated Fe3O4 nanoparticles encapsulated in a metal-organic framework (zeolitic imidazolate framework-67, ZIF-67). The molar ratio of Fe/Co significantly depends on the encapsulated content of Fe3O4 in ZIF-67. The composites filled with 50 wt% of the Fe-Co/NPC-2.0 samples in paraffin show a maximum reflection loss (RL) of -21.7 dB at a thickness of 1.2 mm; in addition, a broad absorption bandwidth for RL < -10 dB which covers from 12.2 to 18 GHz can be obtained, and its minimum reflection loss and bandwidth (RL values exceeding -10 dB) are far greater than those of commercial carbonyl iron powder under a very low thickness (1-1.5 mm). This study not only provides a good reference for future preparation of carbon-based lightweight microwave absorbing materials but also broadens the application of such kinds of metal-organic frameworks.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda