Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Anal Chem ; 96(5): 2217-2226, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38262909

RESUMEN

Circulating tumor cells (CTCs) have emerged as powerful biomarkers for diagnosis of prostate cancer. However, the effective identification and concurrently accurate imaging of CTCs for early screening of prostate cancer have been rarely explored. Herein, we reported a multifunctional gold nanoprobe-based thermophoretic assay for simultaneous specific distinguishing of prostate cancer CTCs and sensitive imaging of intracellular microRNA (miR-21), achieving the rapid and precise detection of prostate cancer. The multifunctional gold nanoprobe (GNP-DNA/Ab) was modified by two types of prostate-specific antibodies, anti-PSMA and anti-EpCAM, which could effectively recognize the targeting CTCs, and meanwhile linked double-stranded DNA for further visually imaging intracellular miR-21. Upon the specific internalization of GNP-DNA/Ab by PC-3 cells, target aberrant miR-21 could displace the signal strand to recover the fluorescence signal for sensitive detection at the single-cell level, achieving single PC-3 cell imaging benefiting from the thermophoresis-mediated signal amplification procedure. Taking advantage of the sensitive miR-21 imaging performance, GNP-DNA/Ab could be employed to discriminate the PC-3 and Jurkat cells because of the different expression levels of miR-21. Notably, PC-3 cells were efficiently recognized from white blood cells, exhibiting promising potential for the early diagnosis of prostate cancer. Furthermore, GNP-DNA/Ab possessed good biocompatibility and stability. Therefore, this work provides a great tool for aberrant miRNA-related detection and specific discrimination of CTCs, achieving the early and accurate diagnosis of prostate cancer.


Asunto(s)
MicroARNs , Células Neoplásicas Circulantes , Neoplasias de la Próstata , Masculino , Humanos , Células Neoplásicas Circulantes/patología , Oro , Neoplasias de la Próstata/patología , ADN
2.
Anal Chem ; 96(21): 8450-8457, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38728011

RESUMEN

Accurate and quantitative detection of pre-eclampsia markers is crucial in reducing pregnancy mortality rates. This study introduces a novel approach utilizing a fluorescent biosensor by the immunosorbent atom transfer radical polymerization (immuno-ATRP) assay to detect the pre-eclampsia protein marker CD81. The critical step used in this sensor is the novel signal amplification strategy of fluorescein polymerization mediated by ferritin-enhanced controlled radical polymerization, which combines with a traditional enzyme-linked immunosorbent assay (ELISA) to further reduce the detection limit of the CD81 protein concentration. The fluorescence intensity was linear versus logarithmic CD81 protein concentration from 0.1 to 10,000 pg mL-1, and the detection limit was 0.067 pg mL-1. Surprisingly, in 30% normal human serum (NHS), the sensor can also detect target protein over 0.1-10,000 pg mL-1, with 0.083 pg mL-1 for the detection limit. Moreover, the proposed biosensor is designed to be cost-effective, making it accessible, particularly in resource-limited settings where expensive detection techniques may not be available. The affordability of this method enables widespread screening and monitoring of preeclampsia, ultimately benefiting many pregnant women by improving their healthcare outcomes. In short, developing of a low-cost and susceptible direct detection method for preeclampsia protein markers, such as CD81, through the use of the immuno-ATRP assay, has significant implications for reducing pregnancy mortality. This method holds promise for early detection, precise treatment, and improved management of preeclampsia, thereby contributing to better maternal and fetal health.


Asunto(s)
Biomarcadores , Técnicas Biosensibles , Polimerizacion , Humanos , Femenino , Embarazo , Biomarcadores/análisis , Biomarcadores/sangre , Técnicas Biosensibles/métodos , Preeclampsia/diagnóstico , Preeclampsia/sangre , Tetraspanina 28/análisis , Tetraspanina 28/metabolismo , Inmunoadsorbentes/química , Límite de Detección , Fluorescencia , Ensayo de Inmunoadsorción Enzimática , Eclampsia/diagnóstico
3.
Anal Chem ; 96(32): 13299-13307, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39090799

RESUMEN

Exosomes have received considerable attention as potent reference markers for the diagnosis of various neoplasms due to their close and direct relationship with the proliferation, adhesion, and migration of tumor. The ultrasensitive detection of cancer-derived low-abundance exosomes is imperative, but still a great challenge. Herein, we report an electrochemiluminescence (ECL) biosensor based on the DNA-bio-bar-code and hybridization chain reaction (HCR)-mediated dual signal amplification for the ultrasensitive detection of cancer-derived exosomes. In this system, two types of aptamers were modified on the magnetic nanoprobe (MNPs) and gold nanoparticles (AuNPs) with numerous bio-bar-code DNA, respectively, which formed "sandwich" structures in the presence of specific target exosomes. The "sandwich" structures were separated under magnetic field, and the numerous bio-bar-code DNA were released by dissolving AuNPs. The released bio-bar-code DNA triggered the HCR procedure to produce a good deal of long DNA duplex structure for embedding in hemin, which generated strong ECL signal in the presence of coreactors for ultrasensitive detection of exosomes. Under the optimal conditions, it exhibited a good linearly of exosomes ranging from 10 to 104 exosomes particle µL-1 with limit of detection down to 5.01 exosome particle µL-1. Furthermore, the high ratio of ECL signal and minor change of ECL intensity indicated the good specificity, stability, and repeatability of this ECL biosensor. Given the good performance for exosome analysis, this ultrasensitive ECL biosensor has a promising application in the clinical diagnosis of early cancers.


Asunto(s)
Técnicas Biosensibles , ADN , Técnicas Electroquímicas , Exosomas , Oro , Mediciones Luminiscentes , Nanopartículas del Metal , Hibridación de Ácido Nucleico , Técnicas Biosensibles/métodos , Exosomas/química , Humanos , Oro/química , ADN/química , Nanopartículas del Metal/química , Límite de Detección , Aptámeros de Nucleótidos/química
4.
Anal Chem ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39161182

RESUMEN

Currently, CRISPR/Cas-based molecular diagnostic techniques usually rely on the introduction of nucleic acid amplification to improve their sensitivity, which is usually more time-consuming, susceptible to aerosol contamination, and therefore not suitable for at-home molecular testing. In this research, we developed an advanced CRISPR/Cas13a-Cas12a-based lateral flow assay that facilitated the ultrasensitive and rapid detection of SARS-CoV-2 RNA directly from samples, without the need for nucleic acid amplification. This method was called CRISPR LFA enabling at-home RNA testing (CLEAR). CLEAR used a novel cascade mechanism with specially designed probes that fold into hairpin structures, enabling visual detection of SARS-CoV-2 sequences down to 1 aM sensitivity levels. More importantly, CLEAR had a positive coincidence rate of 100% and a negative coincidence rate of 100% for clinical nasopharyngeal swabs from 16 patients. CLEAR was particularly suitable for at-home molecular testing, providing a low-cost, user-friendly solution that can efficiently distinguish between different SARS-CoV-2 variants. CLEAR overcame the common limitations of high sensitivity and potential contamination associated with traditional PCR-based systems, making it a promising tool for widespread public health application, especially in environments with limited access to laboratory resources.

5.
Anal Chem ; 96(1): 381-387, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38154078

RESUMEN

Artificial olfactory systems have been widely used in medical fields such as in the analysis of volatile organic compounds (VOCs) in human exhaled breath. However, there is still an urgent demand for a portable, accurate breath VOC analysis system for the healthcare industry. In this work, we proposed a Janus colorimetric face mask (JCFM) for the comfortable evaluation of breath ammonia levels by combining the machine learning K-nearest neighbor (K-NN) algorithm. Such a Janus fabric is designed for the unidirectional penetration of exhaled moisture, which can reduce stickiness and ensure facial dryness and comfort. Four different pH indicators on the colorimetric array serve as recognition elements that cross-react with ammonia, capturing the optical fingerprint information on breath ammonia by mimicking the sophisticated olfactory structure of mammals. The Euclidean distance (ED) is used to quantitatively describe the ammonia concentration between 1 ppm and 10 ppm, indicating that there is a linear relationship between the ammonia concentration and the ED response (R2 = 0.988). The K-NN algorithm based on RGB response features aids in the analysis of the target ammonia level and achieves a prediction accuracy of 96%. This study integrates colorimetry, Janus design, and machine learning to present a wearable and portable sensing system for breath ammonia analysis.


Asunto(s)
Amoníaco , Compuestos Orgánicos Volátiles , Humanos , Amoníaco/análisis , Colorimetría , Máscaras , Pruebas Respiratorias , Compuestos Orgánicos Volátiles/análisis
6.
Anal Chem ; 96(21): 8713-8720, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38745346

RESUMEN

Ketogenic diets have attracted substantial interest in the treatment of chronic diseases, but there are health risks with long-term regimes. Despite the advancements in diagnostic and therapeutic methods in modern medicine, there is a huge gap in personalized health management of this dietary strategy. Hence, we present a wearable microneedle biosensor for real-time ketone and glucose monitoring. The microneedle array possesses excellent mechanical properties, allowing for consistent sampling of interstitial biomarkers while reducing the pain associated with skin puncture. Vertical graphene with outstanding electrical conductivity provides the resulting sensor with a high sensitivity of 234.18 µA mM-1 cm-2 and a low limit detection of 1.21 µM. When this fully integrated biosensor was used in human volunteers, it displayed an attractive analytical capability for tracking the dynamic metabolite levels. Moreover, the results of the on-body evaluation established a significant correlation with commercial blood measurements. Overall, this cost-effective and efficient sensing platform can accelerate the application of a ketogenic diet in personal nutrition and wellness management.


Asunto(s)
Técnicas Biosensibles , Dieta Cetogénica , Grafito , Agujas , Dispositivos Electrónicos Vestibles , Grafito/química , Humanos , Técnicas Biosensibles/instrumentación , Cetonas
7.
Small ; 20(22): e2307701, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38152970

RESUMEN

Electrochemiluminescence (ECL) as an analytical technology with a perfect combination of electrochemistry and spectroscopy has received considerable attention in bioanalysis due to its high sensitivity and broad dynamic range. Given the selectivity of bio-recognition elements and the high sensitivity of the ECL analysis technique, ECL biosensors are powerful platforms for the sensitive detection of biomarkers, achieving the accurate prognosis and diagnosis of diseases. MicroRNAs (miRNAs) are crucial biomarkers involved in a variety of physiological and pathological processes, whose aberrant expression is often related to serious diseases, especially cancers. ECL biosensors can fulfill the highly sensitive and selective requirements for accurate miRNA detection, prompting this review. The ECL mechanisms are initially introduced and subsequently categorize the ECL biosensors for miRNA detection in terms of the quenching agents. Furthermore, the work highlights the signal amplification strategies for enhancing ECL signal to improve the sensitivity of miRNA detection and finally concludes by looking at the challenges and opportunities in ECL biosensors for miRNA detection.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Técnicas Biosensibles/métodos , MicroARNs/análisis , Humanos , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos
8.
Langmuir ; 40(5): 2708-2718, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38277771

RESUMEN

Due to their highly exposed active sites and high aspect ratio caused by their substantial lateral dimension and thin thickness, two-dimensional (2D) metal-organic framework (MOF) nanosheets are currently considered a potential hybrid material for electrochemical sensing. Herein, we present a nickel-based porphyrinic MOF nanosheet as a versatile and robust platform with an enhanced electrochemical detection performance. It is important to note that the nickel porphyrin ligand reacted with Cu(NO3)2·3H2O in a solvothermal process, with polyvinylpyrrolidone (PVP) acting as the surfactant to control the anisotropic development of creating a 2D Cu-TCPP(Ni) MOF nanosheet structure. To realize the exceptional selectivity, sensitivity, and stability of the synthesized 2D Cu-TCPP(Ni) MOF nanosheet, a laser-induced graphene electrode was modified with the MOF nanosheet and employed as a sensor for the detection of p-nitrophenol (p-NP). With a detection range of 0.5-200 µM for differential pulse voltammetry (DPV) and 0.9-300 µM for cyclic voltammetry (CV), the proposed sensor demonstrated enhanced electrochemical performance, with the limit of detection (LOD) for DPV and CV as 0.1 and 0.3 µM, respectively. The outstanding outcome of the sensor is attributed to the 2D Cu-TCPP(Ni) MOF nanosheet's substantial active surface area, innate catalytic activity, and superior adsorption capacity. Furthermore, it is anticipated that the proposed electrode sensor will make it possible to create high-performance electrochemical sensors for environmental point-of-care testing since it successfully detected p-NP in real sample analysis.

9.
Analyst ; 149(5): 1381-1397, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38312079

RESUMEN

Metal-organic frameworks (MOFs) are novel inorganic-organic hybridized crystals with a wide range of applications. In the last twenty years, fluorescence sensing based on MOFs has attracted much attention. MOFs can exhibit luminescence from metal nodes, ligands or introduced guests, which provides an excellent fluorescence response in sensing. However, single-signal emitting MOFs are susceptible to interference from concentration, environment, and excitation intensity, resulting in poor accuracy. To overcome the shortcomings, dual-emission MOF-based ratiometric fluorescence sensors have been proposed and rapidly developed. In this review, we first introduce the luminescence mechanisms, synthetic methods, and detection mechanisms of dual-emission MOFs, highlight the strategies for constructing ratiometric fluorescence sensors based on dual-emission MOFs, and classify them into three categories: intrinsic dual-emission and single-emission MOFs with luminescent guests, and non-emission MOFs with other luminescent materials. Then, we summarize the recent advances in dual-emission MOF-based ratiometric fluorescence sensors in various analytical industries. Finally, we discuss the current challenges and prospects for the future development of these sensors.

10.
Anal Bioanal Chem ; 416(17): 3923-3944, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705905

RESUMEN

Gold nanoclusters (AuNCs) are a class of novel luminescent nanomaterials that exhibit unique properties of ultra-small size, featuring strong anti-photo-bleaching ability, substantial Stokes shift, good biocompatibility, and low toxicity. Various biomolecules have been developed as templates or ligands to protect AuNCs with enhanced stability and luminescent properties for biomedical applications. In this review, the synthesis of AuNCs based on biomolecules including amino acids, peptides, proteins and DNA are summarized. Owing to the advantages of biomolecule-protected AuNCs, they have been employed extensively for diverse applications. The biological applications, particularly in bioimaging, biosensing, disease therapy and biocatalysis have been described in detail herein. Finally, current challenges and future potential prospects of bio-templated AuNCs in biological research are briefly discussed.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Humanos , Técnicas Biosensibles/métodos , Luminiscencia , Animales , Péptidos/química , ADN/química , Proteínas/química , Sustancias Luminiscentes/química , Aminoácidos/química
11.
Mikrochim Acta ; 191(8): 472, 2024 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028442

RESUMEN

A Ti3C2TxMXene-based biosensor has been developed and the photocatalytic atom transfer radical polymerization (photo ATRP) amplification strategy applied to detect target miRNA-21 (tRNA). Initially, Ti3C2TxMXene nanosheets were synthesized from the Ti3AlC2 MAX precursor via selective aluminum etching. Then, functionalization of Ti3C2TxMXene nanosheets with 3-aminopropyl triethoxysilane (APTES) via silylation reactions to facilitate covalent bonding with hairpin DNA biomolecules specifically designed for tRNA detection. Upon binding with the tRNA, the hairpin DNA liberated the azide (N3) group, initiating a click reaction to affix to the photo ATRP initiator. Through the ATRP photoreaction, facilitated by an organic photoredox catalyst and light, a significant amount of ferrocenyl methyl methacrylate (FMMA) monomer was immobilized on the electrode. Therefore, the electrochemical signal is amplified. The electrochemical efficacy of the biosensor was assessed using square wave voltammetry (SWV). Under optimized conditions, the biosensor demonstrated remarkable sensitivity in detecting tRNA, with a linear detection range from 0.01 fM to 10 pM and a detection limit of 2.81 aM. The findings elucidate that the developed biosensor, in conjunction with the photo ATRP strategy, offers reproducibility, stability, and increased sensitivity, underscoring its potential applications within the experimental medical sector of the biomolecular industry.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Límite de Detección , MicroARNs , Titanio , Técnicas Biosensibles/métodos , MicroARNs/análisis , Técnicas Electroquímicas/métodos , Titanio/química , Catálisis , Procesos Fotoquímicos , Humanos , Polimerizacion , Silanos/química
13.
Talanta ; 277: 126386, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876027

RESUMEN

The detection of trypsin and its inhibitors is important for both clinical diagnosis and disease treatment. Abnormal trypsin activity affects pancreatic function and leads to corresponding pathological changes in the body. Therefore, the study presented a riboflavin-induced photo-ATRP electrochemical assay of trypsin activity and its inhibitor, including detection of trypsin activity in real urine samples. Experiments were performed on indium tin oxide (ITO) electrodes modified with sulfhydryl groups of 3-mercaptopropionic acid, and target trypsin-specific cleavage of BSA-Au nanocluster (BSA-Au NCs) was followed by the modification of Au NCs to the electrodes using Au-S. The Au NCs immobilized monodeoxy-monomercapto-ß-cyclodextrin@adamantan-2-amine (SH-ß-CD@2-NH2-Ada) host-guest inclusion complexes to the electrode surfaces via Au-S. In a two-component photo-initiator system consisting of riboflavin as an initiator and ascorbic acid (AA) as a mild reducing agent under mild blue light radiation, a large number of electroactive substances were grafted onto the electrode surface to generate electrochemical signals. In addition, we have successfully realized the detection of clinical drug inhibitors of trypsin. The detection limit of the system is as low as 0.0024 ng/mL, which much littler than the average standard of trypsin in the patient's urine or serum. It's worth noting that this work will provide researchers with a different route to design electrochemical sensors based on non-covalent recognition strategies.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Oro , Riboflavina , Tripsina , Riboflavina/química , Riboflavina/orina , Tripsina/metabolismo , Tripsina/química , Humanos , Oro/química , Biomarcadores/orina , Biomarcadores/sangre , Nanopartículas del Metal/química , Procesos Fotoquímicos , Límite de Detección , Albúmina Sérica Bovina/química , Compuestos de Estaño/química , Inhibidores de Tripsina/química , Inhibidores de Tripsina/farmacología , Inhibidores de Tripsina/orina
14.
Anal Chim Acta ; 1302: 342494, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38580414

RESUMEN

BACKGROUND: Thrombin, a coagulation system protease, is a key enzyme involved in the coagulation cascade and has been developed as a marker for coagulation disorders. However, the methods developed in recent years have the disadvantages of complex operation, long reaction time, low specificity and sensitivity. Meanwhile, thrombin is at a lower level in the pre-disease period. Therefore, to accurately diagnose the disease, it is necessary to develop a fast, simple, highly sensitive and specific method using signal amplification technology. RESULTS: We designed an electrochemical biosensor based on photocatalytic atom transfer radical polymerization (photo-ATRP) signal amplification for the detection of thrombin. Sulfhydryl substrate peptides (without carboxyl groups) are self-assembled to the gold electrode surface via Au-S bond and serve as thrombin recognition probes. The substrate peptide is cleaved in the presence of thrombin to generate -COOH, which can form a carboxylate-Zr(IV)-carboxylate complex via Zr(IV) and initiator (α-bromophenylacetic acid, BPAA). Subsequently, an electrochemical biosensor was prepared by introducing polymer chains with electrochemical signaling molecules (ferrocene, Fc) onto the electrode surface by photocatalytic (perylene, Py) mediated ATRP using ferrocenylmethyl methacrylate (FMMA) as a monomer. The concentration of thrombin was evaluated by the voltammetric signal generated by square wave voltammetry (SWV), and the result showed that the biosensor was linear between 1.0 ng/mL âˆ¼ 10 fg/mL, with a lower detection limit of 4.0 fg/mL (∼0.1 fM). Moreover, it was shown to be highly selective for thrombin activity in complex serum samples and for thrombin inhibition screening. SIGNIFICANCE: The biosensor is an environmentally friendly and economically efficient strategy while maintaining the advantages of high sensitivity, anti-interference, good stability and simplicity of operation, which has great potential for application in the analysis of complex samples.


Asunto(s)
Técnicas Biosensibles , Perileno , ADN/química , Trombina , Polimerizacion , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Péptidos , Límite de Detección
15.
ACS Nano ; 18(4): 3468-3479, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38227490

RESUMEN

Chronic wounds have imposed a severe physical and economic burden on the global healthcare system, which are usually treated by the delivery of drugs or bioactive molecules to the wound bed through wound dressings. In this work, we have demonstrated a hydrogel-functionalized bandage with Janus wettability in a bilayer structure to achieve unidirectional drug delivery and multifunctional wound care. The Janus patterned bandage with porous gradient wetting channels on the upper layer is responsible for the unidirectional transport of the drug from the outside to the wound bed (up to 90% drug transport efficiency) while preventing drug diffusion in unwanted directions (<8%). The hydrogel composed of chitosan quaternary ammonium salt (HACC), poly(vinyl alcohol) (PVA), and poly(acrylic acid) (PAA) at the bottom layer further functionalized such a bandage with biocompatibility, excellent antibacterial properties, and hemostatic ability to promote wound healing. Especially, the hydrogel-functionalized bandage with Janus wettability exhibits excellent mechanical flexibility (∼198% strain), which can comply well with skin deformation (stretching, bending, or twisting) and maintain unidirectional drug delivery behavior without any leakage. The in vivo full-thickness skin wound model confirms that the hydrogel-functionalized bandage can significantly facilitate epithelialization and collagen deposition and improve drug delivery efficiency, thus promoting wound closure and healing (the wound healing ratio was 98.10% at day 15). Such a synergistic strategy of unidirectional drug delivery and multifunctional wound care provides a more efficient, economical, and direct method to promote wound healing, which could be used as a potential high-performance wound dressing for clinical application.


Asunto(s)
Quitosano , Cicatrización de Heridas , Humanos , Humectabilidad , Piel , Hidrogeles/química , Vendajes , Antibacterianos/farmacología , Antibacterianos/química , Quitosano/química
16.
Research (Wash D C) ; 7: 0422, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050822

RESUMEN

Cell culture as the cornerstone of biotechnology remains a labor-intensive process requiring continuous manual oversight and substantial time investment. In this work, we propose an integrated mini-pillar platform for in situ monitoring of multiple cellular metabolism processes, which achieves media anchoring and cell culture through an arrayed mini-pillar chip. The assembly of polyaniline (PANI)/dendritic gold-modified microelectrode biosensors exhibits high sensitivity (63.55 mV/pH) and excellent interference resistance, enabling real-time acquisition of biosensing signals. We successfully employed such integrated devices to real-time measuring pH variations in multiple cells and real-time monitoring of cell metabolism under drug interventions and to facilitate in situ assisted cultivation of 3-dimensional (3D) cell spheroids. This mini-pillar array-based cell culture platform exhibits excellent biosensing sensitivity and real-time monitoring capability, offering considerable potential for the advancement of biotechnology and medical drug development.

17.
Biosensors (Basel) ; 14(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38534224

RESUMEN

Bimetallic coordination polymers (CPs) have two different metal ions as connecting nodes in their polymer structure. The synthesis methods of bimetallic CPs are mainly categorized into the one-pot method and post-synthesis modifications according to various needs. Compared with monometallic CPs, bimetallic CPs have synergistic effects and excellent properties, such as higher gas adsorption rate, more efficient catalytic properties, stronger luminescent properties, and more stable loading platforms, which have been widely applied in the fields of gas adsorption, catalysis, energy storage as well as conversion, and biosensing. In recent years, the study of bimetallic CPs synergized with cancer drugs and functional nanomaterials for the therapy of cancer has increasingly attracted the attention of scientists. This review presents the research progress of bimetallic CPs in biosensing and biomedicine in the last five years and provides a perspective for their future development.


Asunto(s)
Nanoestructuras , Polímeros , Polímeros/química , Metales , Catálisis , Adsorción
18.
Biosens Bioelectron ; 251: 116080, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38324972

RESUMEN

Highly sensitive ratiometric biosensors have attracted much attention in biomarker detection, but most rely on single-mode signals, which can affect accuracy. The development of new principles and methods for dual-mode ratiometric sensing can enhance detection accuracy. Herein, the zinc(II) meso-tetra(4-carboxyphenyl) porphyrin/MXene (ZnTCPP/Ti3C2Tx) hybrids with phosphate-induced stimuli-responsive behavior are used to develop a novel dual-mode fluorescent/electrochemiluminescent (FL/ECL) ratiometric biosensor. The composites exhibit FL quenching and enhanced ECL behavior involving dissolved O2. The FL quenching of ZnTCPP/Ti3C2Tx is caused by energy transfer (EnT) and photo-induced electron transfer (PET) from ZnTCPP to Ti3C2Tx. While the introduction of MXene compensates for the inadequate conductivity of ZnTCPP, facilitating electron transfer, which further makes the surface ZnTCPP more capable of activating O2 to produce singlet oxygen (1O2), thereby generating enhanced cathodic ECL. Furthermore, phosphate ions (PO43-) can interact with the Ti sites of ZnTCPP/Ti3C2Tx, leading to competition for coordination with ZnTCPP, which in turn detaches ZnTCPP, resulting in enhanced FL and reduced ECL. On the basis of the phosphate-induced stimuli-responsive behavior, the dual-mode FL/ECL ratiometric biosensing of alkaline phosphatase (ALP) is achieved through ALP-catalyzed production of PO43- cascade effect with ZnTCPP/Ti3C2Tx. The linear detection range for ALP is 0.1-50 mU/mL, with a detection limit as low as 0.0083 mU/mL. This proposed ZnTCPP/Ti3C2Tx composites with stimuli-responsive behavior is expected to provide new ideas for the development of high-sensitivity dual-mode ratiometric biosensors with promising applications in the precise detection of important biomarkers.


Asunto(s)
Técnicas Biosensibles , Metaloporfirinas , Nitritos , Fosfatos , Elementos de Transición , Técnicas Biosensibles/métodos , Colorantes
19.
Anal Chim Acta ; 1317: 342872, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39030016

RESUMEN

Fluorescently labeled DNA oligonucleotides and gold nanospheres have been frequently utilized in biosensors, providing efficient nucleic acid detection. Nevertheless, the restricted loading capacity of gold nanospheres undermines overall sensitivity. In this study, we employed four-atom-thick ultrathin gold nanosheets (AuNSs), utilizing a "pre-mix model" for rapid target nucleic acid detection. In this approach, fluorescently labeled DNA probes were pre-incubated with the target nucleic acid, followed by the addition of AuNSs for probe adsorption and fluorescence quenching. With the developed method, we efficiently and rapidly detected the SARS-CoV-2 N gene sequence within 30 min, involving a brief 15-min target pre-incubation and a subsequent 15-min adsorption of free probes and fluorescence quenching by AuNSs. This method exhibited heightened sensitivity compared to gold nanospheres, boasting a limit of detection (LOD) of 0.808 nM. Furthermore, exceptional recovery was achieved in simulated biological samples. The study introduces an effective strategy for nucleic acid sensing characterized by rapidity, heightened sensitivity, ease of operation, and robustness. These findings encourage further development of rapid biomarker sensing methods employing 2D nanomaterials.


Asunto(s)
Técnicas Biosensibles , Colorantes Fluorescentes , Oro , Límite de Detección , Nanopartículas del Metal , SARS-CoV-2 , Oro/química , SARS-CoV-2/aislamiento & purificación , Colorantes Fluorescentes/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Humanos , Espectrometría de Fluorescencia , Nanoestructuras/química , Sondas de ADN/química , COVID-19/diagnóstico , COVID-19/virología
20.
ACS Sens ; 9(6): 2815-2825, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38758028

RESUMEN

Bacterial toxins emerge as the primary triggers of foodborne illnesses, posing a significant threat to human health. To ensure food safety, it is imperative to implement point-of-care testing methods. Lateral flow biosensors (LFBs) based on gold nanoparticles (GNPs) have been commonly used for rapid detection, but their applicationis limited by low sensitivity. Based on the localized surface plasmon resonance and photothermal effect of dual gold nanoparticle conjugates (DGNPs), we developed a smartphone-integrated photothermal LFB (PLFB) with double-enhanced colorimetric and photothermal sensitivity. Through numerical simulations, we verified that DGNPs have significantly enhanced photothermal performance compared to single 15 nm GNPs (SGNPs), and applied DGNPs in PLFB for the detection of staphylococcus enterotoxin A (SEA). The colorimetric and photothermal limits of detection of DGNPs-based PLFB for SEA were 0.091 and 0.0038 ng mL-1, respectively. Compared with the colorimetric detection of the SGNPs-based LFB, the colorimetric detection sensitivity of the DGNPs-based PLFB was increased by 10.7 times, and the photothermal detection sensitivity was further improved by 255.3 times. Moreover, the PLFB exhibits robust reproducibility and exceptional specificity and is applicable for detecting SEA in milk samples. This smartphone-integrated PLFB based on DGNPs allows users to detect toxins simply, conveniently, and quickly and has huge application potential in the field of food safety.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Enterotoxinas , Oro , Nanopartículas del Metal , Leche , Oro/química , Nanopartículas del Metal/química , Enterotoxinas/análisis , Técnicas Biosensibles/métodos , Colorimetría/métodos , Leche/química , Animales , Teléfono Inteligente , Límite de Detección , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda