Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Chem Rev ; 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39454031

RESUMEN

The copolymerization of CO2 and epoxides presents a transformative approach to converting greenhouse gases into aliphatic polycarbonates (CO2-PCs), thereby reducing the polymer industry's dependence on fossil resources. Over the past 50 years, a wide array of metallic catalysts, both heterogeneous and homogeneous, have been developed to achieve precise control over polymer selectivity, sequence, regio-, and stereoselectivity. This review details the evolution of metal-based catalysts, with a particular focus on the emergence of organoborane catalysts, and explores how these catalysts effectively address kinetic and thermodynamic challenges in CO2/epoxides copoly2merization. Advances in the synthesis of CO2-PCs with varied sequence and chain architectures through diverse polymerization protocols are examined, alongside the applications of functional CO2-PCs produced by incorporating different epoxides. The review also underscores the contributions of computational techniques to our understanding of copolymerization mechanisms and highlights recent advances in the closed-loop chemical recycling of CO2-sourced polycarbonates. Finally, the industrialization efforts of CO2-PCs are discussed, offering readers a comprehensive understanding of the evolution and future potential of epoxide copolymerization with CO2.

2.
Chem Soc Rev ; 53(7): 3384-3456, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38411207

RESUMEN

The scientific community has witnessed extensive developments and applications of organoboron compounds as synthetic elements and metal-free catalysts for the construction of small molecules, macromolecules, and functional materials over the last two decades. This review highlights the achievements of organoboron-mediated polymerizations in the past several decades alongside the mechanisms underlying these transformations from the standpoint of the polymerization mode. Emphasis is placed on free radical polymerization, Lewis pair polymerization, ionic (cationic and anionic) polymerization, and polyhomologation. Herein, alkylborane/O2 initiating systems mediate the radical polymerization under ambient conditions in a controlled/living manner by careful optimization of the alkylborane structure or additives; when combined with Lewis bases, the selected organoboron compounds can mediate the Lewis pair polymerization of polar monomers; the bicomponent organoboron-based Lewis pairs and bifunctional organoboron-onium catalysts catalyze ring opening (co)polymerization of cyclic monomers (with heteroallenes, such as epoxides, CO2, CO, COS, CS2, episulfides, anhydrides, and isocyanates) with well-defined structures and high reactivities; and organoboranes initiate the polyhomologation of sulfur ylides and arsonium ylides providing functional polyethylene with different topologies. The topological structures of the produced polymers via these organoboron-mediated polymerizations are also presented in this review mainly including linear polymers, block copolymers, cyclic polymers, and graft polymers. We hope the summary and understanding of how organoboron compounds mediate polymerizations can inspire chemists to apply these principles in the design of more advanced organoboron compounds, which may be beneficial for the polymer chemistry community and organometallics/organocatalysis community.

3.
J Am Chem Soc ; 144(43): 19896-19909, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36256447

RESUMEN

Switchable catalysis, in combination with epoxide-involved ring-opening (co)polymerization, is a powerful technique that can be used to synthesize various oxygen-rich block copolymers. Despite intense research in this field, the sequence-controlled polymerization from epoxide congeners has never been realized due to their similar ring-strain which exerts a decisive influence on the reaction process. Recently, quaternary ammonium (or phosphonium)-containing bifunctional organoboron catalysts have been developed by our group, showing high efficiency for various epoxide conversions. Herein, we, for the first time, report an operationally simple pathway to access well-defined polyether-block-polycarbonate copolymers from mixtures of epoxides by switchable catalysis, which was enabled through thermodynamically and kinetically preferential ring-opening of terminal epoxides or internal epoxides under different atmospheres (CO2 or N2) using one representative bifunctional organoboron catalyst. This strategy shows a broad substrate scope as it is suitable for various combinations of terminal epoxides and internal epoxides, delivering corresponding well-defined block copolymers. NMR, MALDI-TOF, and gel permeation chromatography analyses confirmed the successful construction of polyether-block-polycarbonate copolymers. Kinetic studies and density functional theory calculations elucidate the reversible selectivity between different epoxides in the presence/absence of CO2. Moreover, by replacing comonomer CO2 with cyclic anhydride, the well-defined polyether-block-polyester copolymers can also be synthesized. This work provides a rare example of sequence-controlled polymerization from epoxide mixtures, broadening the arsenal of switchable catalysis that can produce oxygen-rich polymers in a controlled manner.


Asunto(s)
Dióxido de Carbono , Compuestos Epoxi , Compuestos Epoxi/química , Cinética , Dióxido de Carbono/química , Oxígeno , Catálisis , Polímeros/química , Carbonatos
4.
Acc Chem Res ; 54(23): 4434-4448, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34806374

RESUMEN

ConspectusElectron-deficient boron-based catalysts with metal-free but metallomimetic characteristics provide a versatile platform for chemical transformations. However, their catalytic performance is usually lower than that of the corresponding metal-based catalysts. Furthermore, many elaborate organoboron compounds are produced via time-consuming multistep syntheses with low yields, presenting a formidable challenge for large-scale applications of these catalysts. Given this context, the development of organoboron catalysts with the combined advantages of high efficiency and easy preparation is of critical importance.Therefore, we envisioned that the construction of a dynamic Lewis multicore system (DLMCS) by integrating the Lewis acidic boron center(s) and a Lewis basic ammonium salt in one molecule would be particularly efficient for on-demand applications because of the intramolecular synergistic effect. This Account summarizes our recent efforts in developing modular organoboron catalysts with unprecedented activities for several chemical transformations. A series of mono-, di-, tri-, and tetranuclear organoboron catalysts was readily designed and prepared in nearly quantitative yields over two steps using commercially available feedstocks. Notably, these catalysts can be modularly tailored by fine control over the electrophilic property of the Lewis acidic boron center(s), electronic and steric effects of the electropositive ammonium cation, linker length between the boron center and the ammonium cation, the number of boron centers, and the nucleophilic anion. This modular design allows systematic manipulation of the reactivity and efficacy of the catalysts, thus optimizing suitable catalysts for versatile chemical transformations. These include the coupling of CO2 and epoxides, copolymerization of CO2 and epoxides, ring-opening polymerization (ROP) of epoxides, and ring-opening copolymerization (ROCOP) of epoxides and cyclic anhydrides.The utilization of mononuclear organoboron catalysts provided a turnover frequency of 11050 h-1 for the CO2/propylene oxide coupling reaction, an unprecedented efficiency of 5.0 kg of polymer/g of catalyst for the copolymerization of CO2 and cyclohexene oxide, and a record-breaking catalytic efficiency of 7.4 kg of polymer/g of catalyst for the ROCOP of epoxides with cyclic anhydrides. A turnover number of 56500 was observed at a catalyst loading of 10 ppm for the ROP of epoxides using the dinuclear catalysts. The tetranuclear organoboron catalysts realized the previously intractable task of the copolymerization of CO2 and epichlorohydrin, producing poly(chloropropylene carbonate) with the highest molecular weight of 36.5 kg/mol reported to date.Furthermore, the study revealed that the interaction between the dynamic Lewis multicore, that is, the intramolecular synergistic effect between the boron center(s) and the quaternary ammonium salt, plays a key role in mediating the catalytic activity and selectivity. This was based on investigations of the crystal structures of the catalysts, key intermediates, reaction kinetics, and density functional theory calculations. The modular tactics for the construction of organoboron catalysts presented in this Account should inspire more advanced catalyst designs.

5.
J Org Chem ; 87(5): 3145-3155, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35073078

RESUMEN

The bifunctional thiourea catalyst system with both electrophilic and nucleophilic centers has been certified to be effective for fixing CO2 under mild reaction conditions; however, many questions remain, especially concerning the relationship between structure and performance. Herein, we systematically studied a series of such bifunctional catalysts with different chain lengths, nucleophilic anions, and substituents, which impact obvious influence on the catalytic performance. The activation energies of catalysts with different chain lengths are calculated via in situ IR. On this basis, we disclosed for the first time that the spacer length of tetramethylene -(CH2)6- is the optimal spatial effect for the coupling of epoxides and CO2. Particularly, the single crystal X-ray diffraction analysis of the molecular structures of the bifunctional catalyst C8 indicated the discovery of the existence of interaction force between the sulfur atom on the thiourea group and one hydrogen atom on the benzene ring, as well as the intermolecular hydrogen bonding interaction of the bromide (Br-) and two NH groups on the thiourea group. The catalyst structure performance, direct observation of the crystal structure, the thermodynamic study, and a wide range of substrates (12 examples) should be informative on the optimization of the existing catalysts or the design of new catalysts in the future.

6.
Angew Chem Int Ed Engl ; 61(46): e202210243, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36131491

RESUMEN

Poly(cyclopentene carbonate) (PCPC) produced by copolymerization of CO2 and cyclopentene oxide (CPO) is a promising but challenging chemical recyclable polymer that has high potential in minimizing plastic pollution and maximizing CO2 utilization. Currently, problems remain to be solved, include low reactivity of toxic metal catalysts, inevitable byproducts, and especially the ambiguous mechanism understanding. Herein, we present the first metal-free access to PCPC by using a series of modular dinuclear organoboron catalysts. PCPC was afforded in an unprecedented catalytic efficiency of 1.0 kg of PCPC/g of catalyst; while the depolymerization of PCPC abides by a combination pathway of random chain scission and chain unzipping, returning CPO in near-quantitative yield (>99 %). The preparation and depolymerization of PCPC along with in depth understanding of related mechanisms would be helpful for further development of advanced catalysts and recyclable plastics.

7.
J Am Chem Soc ; 143(9): 3455-3465, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33591738

RESUMEN

The copolymerization of carbon dioxide (CO2) and epoxides to produce aliphatic polycarbonates is a burgeoning technology for the large-scale utilization of CO2 and degradable polymeric materials. Even with the wealth of advancements achieved over the past 50 years on this green technology, many challenges remain, including the use of metal-containing catalysts for polymerization, the removal of the chromatic metal residue after polymerization, and the limited practicable epoxides, especially for those containing electron-withdrawing groups. Herein, we provide kinds of pinwheel-shaped tetranuclear organoboron catalysts for epichlorohydrin/CO2 copolymerization with >99% polymer selectivity and quantitative CO2 uptake (>99% carbonate linkages) under mild conditions (25-40 °C, 25 bar of CO2). The produced poly(chloropropylene carbonate) has the highest molecular weight of 36.5 kg/mol and glass transition temperature of 45.4 °C reported to date. The energy difference (ΔEa = 60.7 kJ/mol) between the cyclic carbonate and polycarbonate sheds light on the robust performance of our metal-free catalyst. Control experiments and density functional theory (DFT) calculations revealed a cyclically sequential copolymerization mechanism. The metal-free feature, high catalytic performance under mild conditions, and no trouble with chromaticity for the produced polymers imply that our catalysts are practical candidates to advance the CO2-based polycarbonates.

8.
Sheng Li Xue Bao ; 73(2): 223-232, 2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33903884

RESUMEN

The present study was aimed to investigate the role of GluN2B-BDNF pathway in the cerebrospinal fluid-contacting nucleus (CSF-CN) in neuropathic pain. Intra-lateral ventricle injection of cholera toxin subunit B conjugated with horseradish peroxidase (CBHRP) was used to label the CSF-CN. Double-labeled immunofluorescent staining and Western blot were used to observe the expression of GluN2B and BDNF in the CSF-CN. Chronic constriction injury of sciatic nerve (CCI) rat model was used to duplicate the neuropathic pain. Pain behavior was scored to determine the analgesic effects of GluN2B antagonist Ro 25-6981 and BDNF neutralizing antibody on CCI rats. GluN2B and BDNF were expressed in the CSF-CN and their expression was up-regulated in CCI rats. Intra-lateral ventricle injection of GluN2B antagonist Ro 25-6981 or BDNF neutralizing antibody notably alleviated thermal hyperalgesia and mechanical allodynia in CCI rats. Moreover, the increased expression of BDNF protein in CCI rats was reversed by intra-lateral ventricle injection of Ro 25-6981. These results suggest that GluN2B and BDNF are expressed in the CSF-CN and alteration of GluN2B-BDNF pathway in the CSF-CN is involved in the modulation of the peripheral neuropathic pain.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neuralgia , Animales , Hiperalgesia , Ratas , Ratas Sprague-Dawley , Nervio Ciático
9.
Angew Chem Int Ed Engl ; 60(35): 19253-19261, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34109722

RESUMEN

Producing polyesters with high molecular weight (Mn ) through ring-opening copolymerization (ROCOP) of epoxides with cyclic anhydrides remains a major challenge. Herein, we communicate a metal-free, highly active, and high thermoresistance system for the ROCOP of epoxides with cyclic anhydrides to prepare polyesters (13 examples). The organoboron catalysts can endure a reaction temperature as high as 180 °C for the ROCOP of cyclohexane oxide (CHO) with phthalic anhydride (PA) without the observation of any side reactions. The average Mn of the produced poly(CHO-alt-PA) climbed to 94.5 kDa with low polydispersity (Ð=1.19). Furthermore, an unprecedented turnover number of 9900, equivalent to an efficiency of 7.4 kg of polyester/g of catalyst, was achieved at a feed ratio of CHO/PA/catalyst=20000:10000:1 at 150 °C. Kinetic studies, crystal structure analysis, 11 B NMR spectra, and DFT calculations provided mechanistic justification for the effectiveness of the catalyst system.

10.
J Am Chem Soc ; 142(28): 12245-12255, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32538080

RESUMEN

The metallic catalyst-dominated alternating copolymerization of CO2 and epoxides has flourished for 50 years; however, the involved multistep preparation of the catalysts and the necessity to remove the colored metal residue in the final product present significant challenges in scalability. Herein, we report a series of highly active metal-free catalysts featured with an electrophilic boron center and a nucleophilic quaternary ammonium halide in one molecule for copolymerization of epoxides and CO2. The organocatalysts are easily scaled up to kilogram scale with nearly quantitative yield via two steps using commercially available stocks. The organocatalyst-mediated copolymerization of cyclohexane oxide and CO2 displays high activity (turnover frequency up to 4900 h-1) and >99% polycarbonate selectivity in a broad temperature range (25-150 °C) at mild CO2 pressure (15 bar). At a feed ratio of cyclohexane oxide/catalyst = 20 000/1, an efficiency of 5.0 kg of product/g of catalyst was achieved, which is the highest record achieved to date. The unprecedented activity toward CO2/epoxide copolymerization for our catalyst is a consequence of an intramolecular synergistic effect between the electrophilic boron center and the quaternary ammonium salt, which was experimentally ascertained by reaction kinetics studies, multiple control experiments, 11B NMR investigation, and the crystal structure of the catalyst. Density functional theory calculations further corroborated experimental conclusions and provided a deeper understanding of the catalysis process. The metal-free characteristic, scalable preparation, outstanding catalytic performances along with long-term thermostability demonstrate that the catalyst could be a promising candidate for large-scale production of CO2-based polymer.

11.
Angew Chem Int Ed Engl ; 59(39): 16910-16917, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32562445

RESUMEN

This manuscript describes a kind of bifunctional organocatalyst with unprecedented reactivity for the synthesis of polyethers via ring-opening polymerization (ROP) of epoxides under mild conditions. The bifunctional catalyst incorporates two 9-borabicyclo[3.3.1]nonane centers on the two ends as Lewis acidic sites for epoxide activation and a quaternary ammonium halide in the middle as the initiating site. The catalyst could be easily prepared in two steps from commercially available stocks on up to kilogram scale with ≈100 % yield. The organoboron catalyst mediated ROP of epoxides displays living behavior with low catalyst loading (5 ppm) and enables the synthesis of polyethers with molecular weights of over a million grams per mole (>106  g mol-1 ). Based on the investigations on crystal structure of catalyst, MALDI-TOF, and 11 B NMR spectroscopy, an intramolecular ammonium cation assisted SN 2 mechanism is proposed and verified by DFT calculations.

12.
Angew Chem Int Ed Engl ; 59(51): 23291-23298, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-32869449

RESUMEN

A series of highly active organoboron catalysts for the coupling of CO2 and epoxides with the advantages of scalable preparation, thermostability, and recyclability is reported. The metal-free catalysts show high reactivity towards a wide scope of cyclic carbonates (14 examples) and can withstand a high temperature up to 150 °C. Compared with the current metal-free catalytic systems that use mol % catalyst loading, the catalytic capacity of the catalyst described herein can be enhanced by three orders of magnitude (epoxide/cat.=200 000/1, mole ratio) in the presence of a cocatalyst. This feature greatly narrows the gap between metal-free catalysts and state-of-the-art metallic systems. An intramolecular cooperative mechanism is proposed and certified on the basis of investigations on crystal structures, structure-performance relationships, kinetic studies, and key reaction intermediates.

13.
Reprod Biomed Online ; 34(2): 175-180, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27916452

RESUMEN

The aim of this study was to investigate the relationship between normal Fragile X mental retardation gene 1 (FMR1) CGG repeat numbers and primary ovarian insufficiency (POI) occurrence or subsequent resumption of ovarian function. A total of 122 women with POI and 105 controls were followed up and analysed in our centre. The prevalence of premutation and intermediate range of FMR1 CGG repeats in Han Chinese women with POI was only 0.81% (1/122) and 1.64% (2/122), respectively. The risk of POI occurrence for less than 26 CGG repeats and 29 or more CGG repeats in allele1 (smaller allele) was significantly higher than that for 26-28 CGG repeats (odds ratio 13.50, 95% confidence interval: 3.21 to 56.77 and 6.32, 95% confidence interval: 2.49 to 16.09 respectively; both P < 0.001). No significant difference was found in the CGG repeat distribution (<26, 26-28, or ≥29) in FMR1 allele1 between POI cases whose ovarian function resumed and those whose ovarian function did not. It is suggested that the CGG repeat number in allele1, but not that in allele2 (longer allele), was significantly associated with POI occurrence (P < 0.001). Fewer than 26 or more than 28 CGG repeats in FMR1 allele1 were both risk factors of POI occurrence.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Insuficiencia Ovárica Primaria/genética , Repeticiones de Trinucleótidos , Adulto , Alelos , Estudios de Casos y Controles , China , Femenino , Estudios de Seguimiento , Genotipo , Humanos , Mutación , Oportunidad Relativa , Prevalencia , Insuficiencia Ovárica Primaria/epidemiología , Valores de Referencia , Factores de Riesgo , Adulto Joven
14.
Carbohydr Polym ; 343: 122449, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174089

RESUMEN

N-linked glycosylation is a ubiquitous protein post-translational modification in which aberrant glycan biosynthesis has been linked to severe conditions like cancer. Accurate qualitative and quantitative analysis of N-glycans are crucial for investigating their physiological functions. Owing to the intrinsic absence of chromophores and high polarity of the glycans, current detection methods are restricted to liquid chromatography and mass spectrometry. Herein, we describe three new imidazolium-based glycan tags: 2'GITag, 3'GITag, and 4'GITag, that significantly improve both the limit of detection and limit of quantification of derivatized oligosaccharides, in terms of fluorescence intensity and ionisation efficiency. Our top-performing derivatisation agent, 4'GITag, shifted the detection sensitivity range from high femtomole to sub-femtomole levels in ESI-MS compared to traditional glycan label, 2AB, enabling the identification of 24 N-glycans in mouse serum, including those bearing sialic acids. Additionally, 4'GITag stabilized Na-salt forms of sialic acids, simplifying the simultaneous analysis of neutral and negative charged N-glycans significantly, avoiding the need for complex derivatisation procedures typically required for the detection of sialylated species. Overall, the favorable performance of imidazolium tags in the derivatisation and sensitive profiling of glycans has the potential for labeling tissue or live cells to explore disease biomarkers and for developing new targeted therapeutic strategies.


Asunto(s)
Imidazoles , Polisacáridos , Espectrometría de Masa por Ionización de Electrospray , Animales , Polisacáridos/química , Polisacáridos/sangre , Ratones , Imidazoles/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Colorantes Fluorescentes/química , Límite de Detección , Glicosilación
15.
World J Gastroenterol ; 30(19): 2564-2574, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38817663

RESUMEN

BACKGROUND: Cell division cyclin 25C (CDC25C) is a protein that plays a critical role in the cell cycle, specifically in the transition from the G2 phase to the M phase. Recent research has shown that CDC25C could be a potential therapeutic target for cancers, particularly for hepatocellular carcinoma (HCC). However, the specific regulatory mechanisms underlying the role of CDC25C in HCC tumorigenesis and development remain incompletely understood. AIM: To explore the impact of CDC25C on cell proliferation and apoptosis, as well as its regulatory mechanisms in HCC development. METHODS: Hepa1-6 and B16 cells were transduced with a lentiviral vector containing shRNA interference sequences (LV-CDC25C shRNA) to knock down CDC25C. Subsequently, a xenograft mouse model was established by subcutaneously injecting transduced Hepa1-6 cells into C57BL/6 mice to assess the effects of CDC25C knockdown on HCC development in vivo. Cell proliferation and migration were evaluated using a Cell Counting Kit-8 cell proliferation assays and wound healing assays, respectively. The expression of endoplasmic reticulum (ER) stress-related molecules (glucose-regulated protein 78, X-box binding protein-1, and C/EBP homologous protein) was measured in both cells and subcutaneous xenografts using quantitative real-time PCR (qRT-PCR) and western blotting. Additionally, apoptosis was investigated using flow cytometry, qRT-PCR, and western blotting. RESULTS: CDC25C was stably suppressed in Hepa1-6 and B16 cells through LV-CDC25C shRNA transduction. A xenograft model with CDC25C knockdown was successfully established and that downregulation of CDC25C expression significantly inhibited HCC growth in mice. CDC25C knockdown not only inhibited cell proliferation and migration but also significantly increased the ER stress response, ultimately promoting ER stress-induced apoptosis in HCC cells. CONCLUSION: The regulatory mechanism of CDC25C in HCC development may involve the activation of ER stress and the ER stress-induced apoptosis signaling pathway.


Asunto(s)
Carcinogénesis , Carcinoma Hepatocelular , Estrés del Retículo Endoplásmico , Neoplasias Hepáticas , Fosfatasas cdc25 , Animales , Humanos , Masculino , Ratones , Apoptosis , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Fosfatasas cdc25/metabolismo , Fosfatasas cdc25/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones Endogámicos C57BL , ARN Interferente Pequeño/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
CNS Neurosci Ther ; 29(12): 3935-3942, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37334755

RESUMEN

AIMS: The prediction of outcomes in convulsive status epilepticus (CSE) remains a constant challenge. The Encephalitis-Nonconvulsive Status Epilepticus-Diazepam Resistance-Image Abnormalities-Tracheal Intubation (END-IT) score was a useful tool for predicting the functional outcomes of CSE patients, excluding cerebral hypoxia patients. With further understanding of CSE, and in view of the deficiencies of END-IT itself, we consider it necessary to modify the prediction tool. METHODS: The prediction model was designed from a cohort of CSE patients from Xijing Hospital (China), between 2008 and 2020. The enrolled subjects were randomly divided into training cohort and validation cohort as a ratio of 2:1. The logistic regression analysis was performed to identify the predictors and construct the nomogram. The performance of the nomogram was assessed by calculating the concordance index, and creating calibration plots to check the consistency between the predicted probabilities of poor prognosis and the actual outcomes of CSE. RESULTS: The training cohort included 131 patients and validation cohort included 66 patients. Variables included in the nomogram were age, etiology of CSE, non-convulsive SE, mechanical ventilation, abnormal albumin level at CSE onset. The concordance index of the nomogram in the training and validation cohorts was 0.853 (95% CI, 0.787-0.920) and 0.806 (95% CI, 0.683-0.923), respectively. The calibration plots showed an adequate consistency between the reported and predicted unfavorable outcomes of patients with CSE at 3 months after discharge. CONCLUSIONS: A nomogram for predicting the individualized risks of poor functional outcomes in CSE was constructed and validated, which has been an important modification of END-IT score.


Asunto(s)
Encefalitis , Estado Epiléptico , Humanos , Nomogramas , Pronóstico , Estado Epiléptico/diagnóstico , Estado Epiléptico/terapia , Estado Epiléptico/etiología , Encefalitis/complicaciones , Diazepam
17.
Carbohydr Res ; 520: 108643, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35977445

RESUMEN

The functionalization of glycosides with ionic compounds such as ionic liquids provides enhanced polarity for the labelled glycans thanks to the presence of a permanent positive charge. The chemical derivatisation of glycans with ionic liquids constitutes an emerging strategy to boost the detection sensitivity in MS applications. This allows the straightforward monitoring and detection of the presence of labelled glycans in complex matrices and in those cases where very limited amounts of material were available such as in biological samples and chemoenzymatic reactions. The use of ionic liquid based derivatisation agents can be further exploited for the labelling of live cells via metabolic oligosaccharide engineering for the detection of cancer biomarkers and for the tuning of live cells-surface properties with implications in cancer prognosis and progression. In this mini-review we summarise the latest development of the ionic liquid based derivatisation agents in glycoscience focussing on their use for sensitive MS applications.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Iones
18.
J Orthop Sci ; 16(1): 105-13, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21293894

RESUMEN

BACKGROUND: Bacterial infections associated with the use of biomaterials remain a great challenge for orthopedic surgery. The main purpose of the work discussed in this paper was to improve the antibacterial activity of a biomimetic calcium phosphate (CP) coating widely used in orthopedic biomaterials by incorporation of norvancomycin in the biomimetic process. METHODS: CP coating and CP coating containing norvancomycin were produced on a titanium alloy (Ti6Al4V) surface by a biomimetic process. The morphology, surface crystal structure, and concentrations of elements in the coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX), respectively. The amount of norvancomycin and its release were investigated by UV-visible spectroscopy. MTT was used to investigate cell behavior. The morphology of adhered bacteria was observed by SEM. Antibacterial activity was expressed as inhibition zone by using Staphylococcus aureus (ATCC 25923) as model bacteria. RESULTS: Results from SEM, EDX, and XRD revealed formation of a hydroxyapatite (HA) coating. The amount of antibiotic in the CP coating increased with increasing concentration of norvancomycin in the coating solution, followed by a plateau when the concentration of norvancomycin in the coating solution reached 600 mg/l. Approximately 2.16 µg norvancomycin per mg coating was co-precipitated with the CP layer onto titanium alloy discs when 600 mg/l norvancomycin coating solution was applied. The norvancomycin had a fast release profile followed by slow release. The MTT test of osteoblast cell cultures suggested that coatings containing norvancomycin did not cause any cytotoxicity compared with the CP coating and control titanium plate. The antibacterial activity test showed that the norvancomycin released from the coatings inhibited the growth of Staphylococcus aureus; more bacteria were found on the CP coating than on the norvancomycin-loaded coating. CONCLUSIONS: A norvancomycin-loaded HA-like coating was successfully obtained on titanium surfaces. The norvancomycin incorporated had no negative effects on osteoblast cell behavior. The released norvancomycin results in excellent antibacterial activity of Ca-P coatings. Therefore, incorporation of norvancomycin can enhance antibacterial activity and the norvancomycin-loaded CP coating can be used to inhibit post-surgical infections in orthopaedics.


Asunto(s)
Materiales Biomiméticos , Materiales Biocompatibles Revestidos , Durapatita/farmacología , Prótesis Articulares , Infecciones Relacionadas con Prótesis/prevención & control , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/efectos de los fármacos , Humanos , Ensayo de Materiales , Diseño de Prótesis , Infecciones Relacionadas con Prótesis/microbiología , Propiedades de Superficie
19.
ACS Appl Mater Interfaces ; 13(3): 4583-4592, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33448218

RESUMEN

A salt-responsive nanoplatform is constructed through a simple tactic by tethering zwitterionic nanohydrogels (NGs) on a carboxylated silica (SiO2-COOH) framework. Chondroitin sulfate (CS), with a specific recognition effect for low-density lipoprotein (LDL), is modified to NGs by amidation reaction. Water retention and swelling properties of NGs are greatly enhanced in a saline environment attributed to the anti-polyelectrolyte effect. It endows the SiO2-NGs-CS framework a sensitive salt-responsive property, and thus, more CS moieties are exposed. The controlled adsorption of LDL with an adsorption efficiency of 7.2 to 93% is achieved by adjusting the concentration of MgCl2 from 0 to 0.1 mol L-1. SiO2-NGs-CS exhibits excellent adsorption capacity for fishing LDL, acquiring the highest adsorption capacity of 898.1 mg g-1. Moreover, SiO2-NGs-CS shows superior selectivity to the other three proteins with similar isoelectric points (pIs) to LDL. The captured LDL is readily stripped by 0.2% (m/m) SDS with a recovery of 95.4%. The superior separation performance of SiO2-NGs-CS is demonstrated by the isolation and selective discrimination of LDL from the simulated serum of hypercholesterolemia patients, as illustrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis assays.


Asunto(s)
Sulfatos de Condroitina/química , Hidrogeles/química , Lipoproteínas LDL/aislamiento & purificación , Nanogeles/química , Dióxido de Silicio/química , Adsorción , Animales , Bovinos , Electroforesis en Gel de Poliacrilamida , Humanos , Lipoproteínas LDL/sangre , Cloruro de Magnesio/química
20.
Anal Chim Acta ; 1147: 144-154, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33485572

RESUMEN

Zr-based metal-organic framework, UiO-66-NH2, provides favorable adsorption capacity to phosphoproteins, however, it exhibits obvious nonspecific adsorption to other proteins. In the present work, we report a facile strategy to reduce the nonspecific adsorption of nonphosphoproteins by modifying UiO-66-NH2 with imidazolium ionic liquids (ILs). With respect to bare UiO-66-NH2, the modified counterpart, UiO@IL, exhibits much improved selectivity to phosphoproteins while maintains comparable adsorption performance. The surface of UiO@IL presents a strong hydrophilicity due to the modification of ILs. Hydrophobic and electrostatic interaction between the absorbent and nonphosphoprotein is significantly reduced. In addition, the interaction between imidazole group of ILs moiety and phosphate group in phosphoprotein ensures the favorable adsorption capacity of UiO@IL for phosphoproteins. Anionic moieties of ILs, i.e., Cl-, Br-, BF4-, CF3SO3-, play negligible effect in the adsorption process. As a representative, phosphoprotein ß-casein (ß-ca) is selectively enriched at a mass ratio of BSA:ß-ca = 100:1. UiO@IL was further applied for the selective enrichment of phosphoprotein in milk.


Asunto(s)
Líquidos Iónicos , Estructuras Metalorgánicas , Adsorción , Aniones , Fosfoproteínas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda