Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Cell ; 186(21): 4662-4675.e12, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37734372

RESUMEN

Bats, rodents, and shrews are the most important animal sources of human infectious diseases. However, the evolution and transmission of viruses among them remain largely unexplored. Through the meta-transcriptomic sequencing of internal organ and fecal samples from 2,443 wild bats, rodents, and shrews sampled from four Chinese habitats, we identified 669 viruses, including 534 novel viruses, thereby greatly expanding the mammalian virome. Our analysis revealed high levels of phylogenetic diversity, identified cross-species virus transmission events, elucidated virus origins, and identified cases of invertebrate viruses in mammalian hosts. Host order and sample size were the most important factors impacting virome composition and patterns of virus spillover. Shrews harbored a high richness of viruses, including many invertebrate-associated viruses with multi-organ distributions, whereas rodents carried viruses with a greater capacity for host jumping. These data highlight the remarkable diversity of mammalian viruses in local habitats and their ability to emerge in new hosts.

2.
Cell ; 181(2): 223-227, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32220310

RESUMEN

The ongoing pandemic of a new human coronavirus, SARS-CoV-2, has generated enormous global concern. We and others in China were involved in the initial genome sequencing of the virus. Herein, we describe what genomic data reveal about the emergence SARS-CoV-2 and discuss the gaps in our understanding of its origins.


Asunto(s)
Betacoronavirus/genética , Quirópteros/virología , Infecciones por Coronavirus/virología , Reservorios de Enfermedades/virología , Neumonía Viral/virología , Animales , Animales Salvajes , COVID-19 , China , Infecciones por Coronavirus/transmisión , ADN Ambiental , Genoma Viral , Pandemias , Neumonía Viral/transmisión , SARS-CoV-2 , Análisis de Secuencia de ARN , Zoonosis/virología
3.
Cell ; 172(6): 1168-1172, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29522738

RESUMEN

We know less about viruses than any other lifeform. Fortunately, metagenomics has led to a massive expansion in the known diversity of the virosphere. Here, we discuss how metagenomics has changed our understanding of RNA viruses and present some of the remaining challenges, including characterization of the "dark matter" of divergent viral genomes.


Asunto(s)
Variación Genética , Genoma Viral/genética , Metagenómica/métodos , Virus/genética , Evolución Molecular , Filogenia , Virus ARN/clasificación , Virus ARN/genética , Virus/clasificación
4.
Nature ; 580(7803): E7, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296181

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nature ; 579(7798): 265-269, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015508

RESUMEN

Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health1-3. Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here 'WH-Human 1' coronavirus (and has also been referred to as '2019-nCoV'). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China5. This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.


Asunto(s)
Betacoronavirus/clasificación , Enfermedades Transmisibles Emergentes/complicaciones , Enfermedades Transmisibles Emergentes/virología , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/virología , Neumonía Viral/complicaciones , Neumonía Viral/virología , Síndrome Respiratorio Agudo Grave/etiología , Síndrome Respiratorio Agudo Grave/virología , Adulto , Betacoronavirus/genética , COVID-19 , China , Enfermedades Transmisibles Emergentes/diagnóstico por imagen , Enfermedades Transmisibles Emergentes/patología , Infecciones por Coronavirus/diagnóstico por imagen , Infecciones por Coronavirus/patología , Genoma Viral/genética , Humanos , Pulmón/diagnóstico por imagen , Masculino , Filogenia , Neumonía Viral/diagnóstico por imagen , Neumonía Viral/patología , ARN Viral/genética , Recombinación Genética/genética , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/diagnóstico por imagen , Síndrome Respiratorio Agudo Grave/patología , Tomografía Computarizada por Rayos X , Secuenciación Completa del Genoma
6.
EMBO J ; 39(24): e105896, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33140861

RESUMEN

COVID-19 is characterized by dysregulated immune responses, metabolic dysfunction and adverse effects on the function of multiple organs. To understand host responses to COVID-19 pathophysiology, we combined transcriptomics, proteomics, and metabolomics to identify molecular markers in peripheral blood and plasma samples of 66 COVID-19-infected patients experiencing a range of disease severities and 17 healthy controls. A large number of expressed genes, proteins, metabolites, and extracellular RNAs (exRNAs) exhibit strong associations with various clinical parameters. Multiple sets of tissue-specific proteins and exRNAs varied significantly in both mild and severe patients suggesting a potential impact on tissue function. Chronic activation of neutrophils, IFN-I signaling, and a high level of inflammatory cytokines were observed in patients with severe disease progression. In contrast, COVID-19-infected patients experiencing milder disease symptoms showed robust T-cell responses. Finally, we identified genes, proteins, and exRNAs as potential biomarkers that might assist in predicting the prognosis of SARS-CoV-2 infection. These data refine our understanding of the pathophysiology and clinical progress of COVID-19.


Asunto(s)
COVID-19/sangre , COVID-19/patología , Biomarcadores/sangre , COVID-19/inmunología , COVID-19/virología , Femenino , Genómica/métodos , Humanos , Lipoproteínas/metabolismo , Masculino , Metabolómica/métodos , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Carga Viral
7.
PLoS Pathog ; 18(2): e1010259, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35176118

RESUMEN

At the end of 2019 Wuhan witnessed an outbreak of "atypical pneumonia" that later developed into a global pandemic. Metagenomic sequencing rapidly revealed the causative agent of this outbreak to be a novel coronavirus denoted SARS-CoV-2. To provide a snapshot of the pathogens in pneumonia-associated respiratory samples from Wuhan prior to the emergence of SARS-CoV-2, we collected bronchoalveolar lavage fluid samples from 408 patients presenting with pneumonia and acute respiratory infections at the Central Hospital of Wuhan between 2016 and 2017. Unbiased total RNA sequencing was performed to reveal their "total infectome", including viruses, bacteria and fungi. We identified 35 pathogen species, comprising 13 RNA viruses, 3 DNA viruses, 16 bacteria and 3 fungi, often at high abundance and including multiple co-infections (13.5%). SARS-CoV-2 was not present. These data depict a stable core infectome comprising common respiratory pathogens such as rhinoviruses and influenza viruses, an atypical respiratory virus (EV-D68), and a single case of a sporadic zoonotic pathogen-Chlamydia psittaci. Samples from patients experiencing respiratory disease on average had higher pathogen abundance than healthy controls. Phylogenetic analyses of individual pathogens revealed multiple origins and global transmission histories, highlighting the connectedness of the Wuhan population. This study provides a comprehensive overview of the pathogens associated with acute respiratory infections and pneumonia, which were more diverse and complex than obtained using targeted PCR or qPCR approaches. These data also suggest that SARS-CoV-2 or closely related viruses were absent from Wuhan in 2016-2017.


Asunto(s)
COVID-19/epidemiología , Brotes de Enfermedades , Neumonía/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , SARS-CoV-2/aislamiento & purificación , Enfermedad Aguda , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Líquido del Lavado Bronquioalveolar/microbiología , COVID-19/virología , China/epidemiología , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Metagenómica , Persona de Mediana Edad , Filogenia , Neumonía/microbiología , Infecciones del Sistema Respiratorio/microbiología , Adulto Joven
8.
Nature ; 556(7700): 197-202, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618816

RESUMEN

Our understanding of the diversity and evolution of vertebrate RNA viruses is largely limited to those found in mammalian and avian hosts and associated with overt disease. Here, using a large-scale meta-transcriptomic approach, we discover 214 vertebrate-associated viruses in reptiles, amphibians, lungfish, ray-finned fish, cartilaginous fish and jawless fish. The newly discovered viruses appear in every family or genus of RNA virus associated with vertebrate infection, including those containing human pathogens such as influenza virus, the Arenaviridae and Filoviridae families, and have branching orders that broadly reflected the phylogenetic history of their hosts. We establish a long evolutionary history for most groups of vertebrate RNA virus, and support this by evaluating evolutionary timescales using dated orthologous endogenous virus elements. We also identify new vertebrate-specific RNA viruses and genome architectures, and re-evaluate the evolution of vector-borne RNA viruses. In summary, this study reveals diverse virus-host associations across the entire evolutionary history of the vertebrates.


Asunto(s)
Evolución Molecular , Filogenia , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Vertebrados/clasificación , Vertebrados/virología , Anfibios/virología , Animales , Biodiversidad , Peces/virología , Genoma Viral/genética , Interacciones Huésped-Patógeno , Virus ARN/genética , Reptiles/virología , Transcriptoma
9.
Nature ; 561(7722): E6, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29946168

RESUMEN

Change history: In this Article, author Li Liu should be associated with affiliation number 5 (College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China), rather than affiliation number 4 (Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang, China). This has been corrected online.

10.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38059782

RESUMEN

Discoviridae is a family of negative-sense RNA viruses with genomes of 6.2-9.7 kb that have been associated with fungi and stramenopiles. The discovirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a nonstructural protein (Ns), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Discoviridae, which is available at ictv.global/report/discoviridae.


Asunto(s)
Virus ARN , Virus , Virus ARN/genética , Genoma Viral , Virus/genética , Virus ARN de Sentido Negativo , Nucleoproteínas/genética , Replicación Viral , Virión/genética
11.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38112172

RESUMEN

Mypoviridae is a family of negative-sense RNA viruses with genomes of about 16.0 kb that have been found in myriapods. The mypovirid genome consists of three monocistronic RNA segments that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Mypoviridae, which is available at: ictv.global/report/mypoviridae.


Asunto(s)
Artrópodos , Virus ARN , Virus , Animales , Genoma Viral , Virus ARN/genética , Virus/genética , Virus ARN de Sentido Negativo , Replicación Viral , Virión/genética
12.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38116934

RESUMEN

Tulasviridae is a family of ambisense RNA viruses with genomes of about 12.2 kb that have been found in fungi. The tulasvirid genome is nonsegmented and contains three open reading frames (ORFs) that encode a nucleoprotein (NP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and a protein of unknown function (X). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Tulasviridae, which is available at ictv.global/report/tulasviridae.


Asunto(s)
Virus ARN , Virus , Genoma Viral , Virus/genética , Virus ARN/genética , Filogenia , Nucleoproteínas/genética , Replicación Viral
13.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38116933

RESUMEN

Wupedeviridae is a family of negative-sense RNA viruses with genomes of about 20.5 kb that have been found in myriapods. The wupedevirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Wupedeviridae, which is available at ictv.global/report/wupedeviridae.


Asunto(s)
Artrópodos , Virus ARN , Virus , Animales , Genoma Viral , Virus ARN/genética , Virus/genética , Virus ARN de Sentido Negativo , Replicación Viral , Virión/genética
14.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38117185

RESUMEN

Cruliviridae is a family of negative-sense RNA viruses with genomes of 10.8-11.5 kb that have been found in crustaceans. The crulivirid genome consists of three RNA segments with ORFs that encode a nucleoprotein (NP), a glycoprotein (GP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and in some family members, a zinc-finger (Z) protein of unknown function. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Cruliviridae, which is available at ictv.global/report/cruliviridae.


Asunto(s)
Virus ARN , Virus ARN de Sentido Negativo , Nucleoproteínas , Sistemas de Lectura Abierta , ARN
15.
Nature ; 540(7634): 539-543, 2016 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-27880757

RESUMEN

Current knowledge of RNA virus biodiversity is both biased and fragmentary, reflecting a focus on culturable or disease-causing agents. Here we profile the transcriptomes of over 220 invertebrate species sampled across nine animal phyla and report the discovery of 1,445 RNA viruses, including some that are sufficiently divergent to comprise new families. The identified viruses fill major gaps in the RNA virus phylogeny and reveal an evolutionary history that is characterized by both host switching and co-divergence. The invertebrate virome also reveals remarkable genomic flexibility that includes frequent recombination, lateral gene transfer among viruses and hosts, gene gain and loss, and complex genomic rearrangements. Together, these data present a view of the RNA virosphere that is more phylogenetically and genomically diverse than that depicted in current classification schemes and provide a more solid foundation for studies in virus ecology and evolution.

16.
Cancer ; 127(11): 1880-1893, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33784413

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer in China, however, publicly available, descriptive information on the clinical epidemiology of CRC is limited. METHODS: Patients diagnosed with primary CRC during 2005 through 2014 were sampled from 13 tertiary hospitals in 9 provinces across China. Data related to sociodemographic characteristics, the use of diagnostic technology, treatment adoption, and expenditure were extracted from individual medical records. RESULTS: In the full cohort of 8465 patients, the mean ± SD age at diagnosis was 59.3 ± 12.8 years, 57.2% were men, and 58.7% had rectal cancer. On average, 14.4% of patients were diagnosed with stage IV disease, and this proportion increased from 13.5% in 2005 to 20.5% in 2014 (P value for trend < .05). For diagnostic techniques, along with less use of x-rays (average, 81.6%; decreased from 90.0% to 65.7%), there were increases in the use of computed tomography (average, 70.4%; increased from 4.5% to 90.5%) and magnetic resonance imaging (average, 8.8%; increased from 0.1% to 20.4%) over the study period from 2005 to 2014. With regard to treatment, surgery alone was the most common (average, 50.1%), but its use decreased from 51.3% to 39.8% during 2005 through 2014; and the use of other treatments increased simultaneously, such as chemotherapy alone (average, 4.1%; increased from 4.1% to 11.9%). The average medical expenditure per patient was 66,291 Chinese Yuan (2014 value) and increased from 47,259 to 86,709 Chinese Yuan. CONCLUSIONS: The increasing proportion of late-stage diagnoses presents a challenge for CRC control in China. Changes in diagnostic and treatment options and increased expenditures are clearly illustrated in this study. Coupled with the recent introduction of screening initiatives, these data provide an understanding of changes over time and may form a benchmark for future related evaluations of CRC interventions in China.


Asunto(s)
Neoplasias Colorrectales , Utilización de Instalaciones y Servicios , Gastos en Salud , Anciano , China/epidemiología , Neoplasias Colorrectales/economía , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/terapia , Utilización de Instalaciones y Servicios/economía , Utilización de Instalaciones y Servicios/estadística & datos numéricos , Femenino , Gastos en Salud/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Encuestas y Cuestionarios
18.
J Virol ; 91(17)2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28637760

RESUMEN

Although shrews are one of the largest groups of mammals, little is known about their role in the evolution and transmission of viral pathogens, including coronaviruses (CoVs). We captured 266 Asian house shrews (Suncus murinus) in Jiangxi and Zhejiang Provinces, China, during 2013 to 2015. CoV RNA was detected in 24 Asian house shrews, with an overall prevalence of 9.02%. Complete viral genome sequences were successfully recovered from the RNA-positive samples. The newly discovered shrew CoV fell into four lineages reflecting their geographic origins, indicative of largely allopatric evolution. Notably, these viruses were most closely related to alphacoronaviruses but sufficiently divergent that they should be considered a novel member of the genus Alphacoronavirus, which we denote Wénchéng shrew virus (WESV). Phylogenetic analysis revealed that WESV was a highly divergent member of the alphacoronaviruses and, more dramatically, that the S gene of WESV fell in a cluster that was genetically distinct from that of known coronaviruses. The divergent position of WESV suggests that coronaviruses have a long association with Asian house shrews. In addition, the genome of WESV contains a distinct NS7 gene that exhibits no sequence similarity to genes of any known viruses. Together, these data suggest that shrews are natural reservoirs for coronaviruses and may have played an important and long-term role in CoV evolution.IMPORTANCE The subfamily Coronavirinae contains several notorious human and animal pathogens, including severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and porcine epidemic diarrhea virus. Because of their genetic diversity and phylogenetic relationships, it has been proposed that the alphacoronaviruses likely have their ultimate ancestry in the viruses residing in bats. Here, we describe a novel alphacoronavirus (Wénchéng shrew virus [WESV]) that was sampled from Asian house shrews in China. Notably, WESV is a highly divergent member of the alphacoronaviruses and possesses an S gene that is genetically distinct from those of all known coronaviruses. In addition, the genome of WESV contains a distinct NS7 gene that exhibits no sequence similarity to those of any known viruses. Together, these data suggest that shrews are important and longstanding hosts for coronaviruses that merit additional research and surveillance.

19.
J Virol ; 90(2): 659-69, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26491167

RESUMEN

UNLABELLED: Viruses of the family Flaviviridae are important pathogens of humans and other animals and are currently classified into four genera. To better understand their diversity, evolutionary history, and genomic flexibility, we used transcriptome sequencing (RNA-seq) to search for the viruses related to the Flaviviridae in a range of potential invertebrate and vertebrate hosts. Accordingly, we recovered the full genomes of five segmented jingmenviruses and 12 distant relatives of the known Flaviviridae ("flavi-like" viruses) from a range of arthropod species. Although these viruses are highly divergent, they share a similar genomic plan and common ancestry with the Flaviviridae in the NS3 and NS5 regions. Remarkably, although these viruses fill in major gaps in the phylogenetic diversity of the Flaviviridae, genomic comparisons reveal important changes in genome structure, genome size, and replication/gene regulation strategy during evolutionary history. In addition, the wide diversity of flavi-like viruses found in invertebrates, as well as their deep phylogenetic positions, suggests that they may represent the ancestral forms from which the vertebrate-infecting viruses evolved. For the vertebrate viruses, we expanded the previously mammal-only pegivirus-hepacivirus group to include a virus from the graceful catshark (Proscyllium habereri), which in turn implies that these viruses possess a larger host range than is currently known. In sum, our data show that the Flaviviridae infect a far wider range of hosts and exhibit greater diversity in genome structure than previously anticipated. IMPORTANCE: The family Flaviviridae of RNA viruses contains several notorious human pathogens, including dengue virus, West Nile virus, and hepatitis C virus. To date, however, our understanding of the biodiversity and evolution of the Flaviviridae has largely been directed toward vertebrate hosts and their blood-feeding arthropod vectors. Therefore, we investigated an expanded group of potential arthropod and vertebrate host species that have generally been ignored by surveillance programs. Remarkably, these species contained diverse flaviviruses and related viruses that are characterized by major changes in genome size and genome structure, such that these traits are more flexible than previously thought. More generally, these data suggest that arthropods may be the ultimate reservoir of the Flaviviridae and related viruses, harboring considerable genetic and phenotypic diversity. In sum, this study revises the traditional view on the evolutionary history, host range, and genomic structures of a major group of RNA viruses.


Asunto(s)
Artrópodos/virología , Evolución Molecular , Flaviviridae/clasificación , Flaviviridae/genética , Variación Genética , Vertebrados/virología , Animales , Flaviviridae/aislamiento & purificación , Flaviviridae/fisiología , Genoma Viral , Especificidad del Huésped , Humanos , Filogenia , Sintenía
20.
Proc Natl Acad Sci U S A ; 111(18): 6744-9, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24753611

RESUMEN

Although segmented and unsegmented RNA viruses are commonplace, the evolutionary links between these two very different forms of genome organization are unclear. We report the discovery and characterization of a tick-borne virus--Jingmen tick virus (JMTV)--that reveals an unexpected connection between segmented and unsegmented RNA viruses. The JMTV genome comprises four segments, two of which are related to the nonstructural protein genes of the genus Flavivirus (family Flaviviridae), whereas the remaining segments are unique to this virus, have no known homologs, and contain a number of features indicative of structural protein genes. Remarkably, homology searching revealed that sequences related to JMTV were present in the cDNA library from Toxocara canis (dog roundworm; Nematoda), and that shared strong sequence and structural resemblances. Epidemiological studies showed that JMTV is distributed in tick populations across China, especially Rhipicephalus and Haemaphysalis spp., and experiences frequent host-switching and genomic reassortment. To our knowledge, JMTV is the first example of a segmented RNA virus with a genome derived in part from unsegmented viral ancestors.


Asunto(s)
Flaviviridae/genética , Genoma Viral , Garrapatas/virología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Línea Celular , China , ADN Viral/genética , Perros , Evolución Molecular , Flaviviridae/clasificación , Flaviviridae/ultraestructura , Flavivirus/genética , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Filogenia , Proteómica , Virus Reordenados/clasificación , Virus Reordenados/genética , Virus Reordenados/ultraestructura , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda