Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 908
Filtrar
1.
Nature ; 627(8005): 890-897, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448592

RESUMEN

In eukaryotes, DNA compacts into chromatin through nucleosomes1,2. Replication of the eukaryotic genome must be coupled to the transmission of the epigenome encoded in the chromatin3,4. Here we report cryo-electron microscopy structures of yeast (Saccharomyces cerevisiae) replisomes associated with the FACT (facilitates chromatin transactions) complex (comprising Spt16 and Pob3) and an evicted histone hexamer. In these structures, FACT is positioned at the front end of the replisome by engaging with the parental DNA duplex to capture the histones through the middle domain and the acidic carboxyl-terminal domain of Spt16. The H2A-H2B dimer chaperoned by the carboxyl-terminal domain of Spt16 is stably tethered to the H3-H4 tetramer, while the vacant H2A-H2B site is occupied by the histone-binding domain of Mcm2. The Mcm2 histone-binding domain wraps around the DNA-binding surface of one H3-H4 dimer and extends across the tetramerization interface of the H3-H4 tetramer to the binding site of Spt16 middle domain before becoming disordered. This arrangement leaves the remaining DNA-binding surface of the other H3-H4 dimer exposed to additional interactions for further processing. The Mcm2 histone-binding domain and its downstream linker region are nested on top of Tof1, relocating the parental histones to the replisome front for transfer to the newly synthesized lagging-strand DNA. Our findings offer crucial structural insights into the mechanism of replication-coupled histone recycling for maintaining epigenetic inheritance.


Asunto(s)
Cromatina , Replicación del ADN , Epistasis Genética , Histonas , Saccharomyces cerevisiae , Sitios de Unión , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestructura , Microscopía por Crioelectrón , Replicación del ADN/genética , ADN de Hongos/biosíntesis , ADN de Hongos/química , ADN de Hongos/metabolismo , ADN de Hongos/ultraestructura , Epistasis Genética/genética , Histonas/química , Histonas/metabolismo , Histonas/ultraestructura , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/ultraestructura , Nucleosomas/química , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
2.
Mol Cell ; 77(3): 618-632.e5, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31806350

RESUMEN

TMEM39A, encoding an ER-localized transmembrane protein, is a susceptibility locus for multiple autoimmune diseases. The molecular function of TMEM39A remains completely unknown. Here we demonstrated that TMEM39A, also called SUSR2, modulates autophagy activity by regulating the spatial distribution and levels of PtdIns(4)P. Depletion of SUSR2 elevates late endosomal/lysosomal PtdIns(4)P levels, facilitating recruitment of the HOPS complex to promote assembly of the SNARE complex for autophagosome maturation. SUSR2 knockdown also increases the degradative capability of lysosomes. Mechanistically, SUSR2 interacts with the ER-localized PtdIns(4)P phosphatase SAC1 and also the COPII SEC23/SEC24 subunits to promote the ER-to-Golgi transport of SAC1. Retention of SAC1 on the ER in SUSR2 knockdown cells increases the level of PtdIns(3)P produced by the VPS34 complex, promoting autophagosome formation. Our study reveals that TMEM39A/SUSR2 acts as an adaptor protein for efficient export of SAC1 from the ER and provides insights into the pathogenesis of diseases associated with TMEM39A mutations.


Asunto(s)
Autofagia/fisiología , Proteínas de la Membrana/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células COS , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/fisiología , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/fisiología , Transporte de Proteínas/fisiología
3.
EMBO J ; 41(15): e110218, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35775648

RESUMEN

Carnitine metabolism is thought to be negatively correlated with the progression of hepatocellular carcinoma (HCC) and the specific molecular mechanism is yet to be fully elucidated. Here, we report that little characterized cysteine-rich protein 1 (CRIP1) is upregulated in HCC and associated with poor prognosis. Moreover, CRIP1 promoted HCC cancer stem-like properties by downregulating carnitine energy metabolism. Mechanistically, CRIP1 interacted with BBOX1 and the E3 ligase STUB1, promoting BBOX1 ubiquitination and proteasomal degradation, and leading to the downregulation of carnitine. BBOX1 ubiquitination at lysine 240 is required for CRIP1-mediated control of carnitine metabolism and cancer stem-like properties. Further, our data showed that acetylcarnitine downregulation in CRIP1-overexpressing cells decreased beta-catenin acetylation and promoted nuclear accumulation of beta-catenin, thus facilitating cancer stem-like properties. Clinically, patients with higher CRIP1 protein levels had lower BBOX1 levels but higher nuclear beta-catenin levels in HCC tissues. Together, our findings identify CRIP1 as novel upstream control factor for carnitine metabolism and cancer stem-like properties, suggesting targeting of the CRIP1/BBOX1/ß-catenin axis as a promising strategy for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Proteínas Portadoras/metabolismo , Proteínas con Dominio LIM/metabolismo , Neoplasias Hepáticas , gamma-Butirobetaína Dioxigenasa/metabolismo , Carcinoma Hepatocelular/metabolismo , Carnitina , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
4.
Genome Res ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37918962

RESUMEN

Satellite DNA are long tandemly repeating sequences in a genome and may be organized as high-order repeats (HORs). They are enriched in centromeres and are challenging to assemble. Existing algorithms for identifying satellite repeats either require the complete assembly of satellites or only work for simple repeat structures without HORs. Here we describe Satellite Repeat Finder (SRF), a new algorithm for reconstructing satellite repeat units and HORs from accurate reads or assemblies without prior knowledge on repeat structures. Applying SRF to real sequence data, we show that SRF could reconstruct known satellites in human and well-studied model organisms. We also find satellite repeats are pervasive in various other species, accounting for up to 12% of their genome contents but are often underrepresented in assemblies. With the rapid progress in genome sequencing, SRF will help the annotation of new genomes and the study of satellite DNA evolution even if such repeats are not fully assembled.

5.
EMBO Rep ; 25(3): 1130-1155, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38291337

RESUMEN

The correct establishment of DNA methylation patterns is vital for mammalian development and is achieved by the de novo DNA methyltransferases DNMT3A and DNMT3B. DNMT3B localises to H3K36me3 at actively transcribing gene bodies via its PWWP domain. It also functions at heterochromatin through an unknown recruitment mechanism. Here, we find that knockout of DNMT3B causes loss of methylation predominantly at H3K9me3-marked heterochromatin and that DNMT3B PWWP domain mutations or deletion result in striking increases of methylation in H3K9me3-marked heterochromatin. Removal of the N-terminal region of DNMT3B affects its ability to methylate H3K9me3-marked regions. This region of DNMT3B directly interacts with HP1α and facilitates the bridging of DNMT3B with H3K9me3-marked nucleosomes in vitro. Our results suggest that DNMT3B is recruited to H3K9me3-marked heterochromatin in a PWWP-independent manner that is facilitated by the protein's N-terminal region through an interaction with a key heterochromatin protein. More generally, we suggest that DNMT3B plays a role in DNA methylation homeostasis at heterochromatin, a process which is disrupted in cancer, aging and Immunodeficiency, Centromeric Instability and Facial Anomalies (ICF) syndrome.


Asunto(s)
Metilación de ADN , Cara/anomalías , Heterocromatina , Enfermedades de Inmunodeficiencia Primaria , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Mutación , Mamíferos/genética , Mamíferos/metabolismo
6.
Mol Syst Biol ; 20(5): 506-520, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491213

RESUMEN

Codon optimality is a major determinant of mRNA translation and degradation rates. However, whether and through which mechanisms its effects are regulated remains poorly understood. Here we show that codon optimality associates with up to 2-fold change in mRNA stability variations between human tissues, and that its effect is attenuated in tissues with high energy metabolism and amplifies with age. Mathematical modeling and perturbation data through oxygen deprivation and ATP synthesis inhibition reveal that cellular energy variations non-uniformly alter the effect of codon usage. This new mode of codon effect regulation, independent of tRNA regulation, provides a fundamental mechanistic link between cellular energy metabolism and eukaryotic gene expression.


Asunto(s)
Codón , Metabolismo Energético , Estabilidad del ARN , ARN Mensajero , Humanos , Metabolismo Energético/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Codón/genética , Uso de Codones , Biosíntesis de Proteínas , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Adenosina Trifosfato/metabolismo , Regulación de la Expresión Génica
7.
Proc Natl Acad Sci U S A ; 119(49): e2209256119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36454752

RESUMEN

Auxin inactivation is critical for plant growth and development. To develop plant growth regulators functioning in auxin inactivation pathway, we performed a phenotype-based chemical screen in Arabidopsis and identified a chemical, nalacin, that partially mimicked the effects of auxin. Genetic, pharmacological, and biochemical approaches demonstrated that nalacin exerts its auxin-like activities by inhibiting indole-3-acetic acid (IAA) conjugation that is mediated by Gretchen Hagen 3 (GH3) acyl acid amido synthetases. The crystal structure of Arabidopsis GH3.6 in complex with D4 (a derivative of nalacin) together with docking simulation analysis revealed the molecular basis of the inhibition of group II GH3 by nalacin. Sequence alignment analysis indicated broad bioactivities of nalacin and D4 as inhibitors of GH3s in vascular plants, which were confirmed, at least, in tomato and rice. In summary, our work identifies nalacin as a potent inhibitor of IAA conjugation mediated by group II GH3 that plays versatile roles in hormone-regulated plant development and has potential applications in both basic research and agriculture.


Asunto(s)
Arabidopsis , Ligasas , Arabidopsis/genética , Ácidos Indolacéticos/farmacología , Fenómenos Químicos , Reguladores del Crecimiento de las Plantas/farmacología , Pruebas Genéticas
8.
Plant J ; 115(4): 895-909, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37133258

RESUMEN

Grain size is a key factor in determining rice (Oryza sativa) yield, and exploring new pathways to regulate grain size has immense potential to improve yield. In this study, we report that OsCBL5 encodes a calcineurin B subunit protein that significantly promotes grain size and weight. oscbl5 plants produced obviously smaller and lighter seeds. We further revealed that OsCBL5 promotes grain size by affecting cell expansion in the spikelet hull. Biochemical analyses demonstrated that CBL5 interacts with CIPK1 and PP23. Furthermore, double and triple mutations were induced using CRISPR/Cas9 (cr) to analyze the genetic relationship. It was found that the cr-cbl5/cipk1 phenotype was similar to that of cr-cipk1 and that the cr-cbl5/pp23, cr-cipk1/pp23, and cr-cbl5/cipk1/pp23 phenotype was similar to that of cr-pp23, indicating that OsCBL5, CIPK1, and PP23 act as a molecular module influencing seed size. In addition, the results show that both CBL5 and CIPK1 are involved in the gibberellic acid (GA) pathway and significantly affect the accumulation of endogenous active GA4 . PP23 participates in GA signal transduction. In brief, this study identified a new module that affects rice grain size, OsCBL5-CIPK1-PP23, which could potentially be targeted to improve rice yield.


Asunto(s)
Giberelinas , Oryza , Giberelinas/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas
9.
Neuroimage ; 289: 120551, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382862

RESUMEN

It has been revealed that abnormal voxel-mirrored homotopic connectivity (VMHC) is present in patients with schizophrenia, yet there are inconsistencies in the relevant findings. Moreover, little is known about their association with brain gene expression profiles. In this study, transcription-neuroimaging association analyses using gene expression data from Allen Human Brain Atlas and case-control VMHC differences from both the discovery (meta-analysis, including 9 studies with a total of 386 patients and 357 controls) and replication (separate group-level comparisons within two datasets, including a total of 258 patients and 287 controls) phases were performed to identify genes associated with VMHC alterations. Enrichment analyses were conducted to characterize the biological functions and specific expression of identified genes, and Neurosynth decoding analysis was performed to examine the correlation between cognitive-related processes and VMHC alterations in schizophrenia. In the discovery and replication phases, patients with schizophrenia exhibited consistent VMHC changes compared to controls, which were correlated with a series of cognitive-related processes; meta-regression analysis revealed that illness duration was negatively correlated with VMHC abnormalities in the cerebellum and postcentral/precentral gyrus. The abnormal VMHC patterns were stably correlated with 1287 genes enriched for fundamental biological processes like regulation of cell communication, nervous system development, and cell communication. In addition, these genes were overexpressed in astrocytes and immune cells, enriched in extensive cortical regions and wide developmental time windows. The present findings may contribute to a more comprehensive understanding of the molecular mechanisms underlying VMHC alterations in patients with schizophrenia.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Imagen por Resonancia Magnética , Encéfalo , Mapeo Encefálico , Expresión Génica
10.
Mol Cancer ; 23(1): 19, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38243263

RESUMEN

Heat shock proteins play crucial roles in various biochemical processes, encompassing protein folding and translocation. HSP90B1, a conserved member of the heat shock protein family, growing evidences have demonstrated that it might be closely associated with cancer development. In the present study, we employed multi-omics analyses and cohort validations to explore the dynamic expression of HSP90B1 in pan-cancer and comprehensively evaluate HSP90B1 as a novel biomarker that hold promise for precision cancer diagnostics and therapeutics. The results suggest HSP90B1 was highly expressed in various kinds of tumors, often correlating with a poor prognosis. Notably, methylation of HSP90B1 emerged as a protective factor in several cancer types. In immune infiltration analysis, the expression of HSP90B1 in most tumors showed a negative association with CD8 + T cells. HSP90B1 expression was positively correlated with microsatellite instability and tumor mutational burden. HSP90B1 expression was also discovered to be positively correlated with tumor metabolism, cell cycle-related pathways and the expression of immune checkpoint genes. The expression of HSP90B1 was mainly negatively correlated with immunostimulatory genes and positively correlated with immunosuppressive genes, as well as strongly correlated with chemokines and their receptor genes. In addition, the HSP90B1 inhibitor PU-WS13 demonstrated significant efficacy in suppressing cancer cell proliferation in both leukemic and solid tumor cells, and remarkably reduced the expression of the cancer cell surface immune checkpoint PD-L1. The single-cell RNA sequencing analysis further highlighted that HSP90B1 was significantly higher in tumor cells compared to surrounding cells, revealing a potential target therapeutic window. Taken together, HSP90B1 emerges as a promising avenue for breakthroughs in cancer diagnosis, prognosis and therapy. This study provides a rationale for HSP90B1 targeted cancer diagnosis and therapy in future.


Asunto(s)
Neoplasias , Humanos , Linfocitos T CD8-positivos , Ciclo Celular , Membrana Celular , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Pronóstico
11.
Int J Cancer ; 155(4): 646-653, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38598851

RESUMEN

Nasopharyngeal carcinoma (NPC) has a unique geographic distribution. It is unknown whether meteorological factors are related to the incidence of NPC. To investigate the effect of ambient temperature, relative humidity (RH), and absolute humidity (AH) on the incidence of NPC, we collected the incidence rate of NPC in 2016 and meteorological data from 2006 to 2016 from 484 cities and counties across 31 provinces in China. Generalized additive models with quasi-Poisson regression and generalized linear models with natural cubic splines were employed respectively to elucidate the nonlinear relationships and specify the partial linear relationships. Subgroup and interactive analysis were also conducted. Temperature (R2 = 0.68, p < .001), RH (R2 = 0.47, p < .001), and AH (R2 = 0.70, p < .001) exhibited nonlinear correlations with NPC incidence rate. The risk of NPC incidence increased by 20.3% (95% confidence intervals [CI]: [18.9%, 21.7%]) per 1°C increase in temperature, by 6.3% (95% CI: [5.3%, 7.2%]) per 1% increase in RH, and by 32.2% (95% CI: [30.7%, 33.7%]) per 1 g/m3 increase in AH, between their the 25th and the 99th percentiles. In addition, the combination of low temperature and low RH was also related to increased risk (relative risk: 1.60, 95% CI: [1.18, 2.17]). Males and eastern or rural populations tended to be more vulnerable. In summary, this study suggests that ambient temperature, RH, and particularly AH are associated with the risk of NPC incidence.


Asunto(s)
Humedad , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Temperatura , Humanos , China/epidemiología , Masculino , Incidencia , Carcinoma Nasofaríngeo/epidemiología , Carcinoma Nasofaríngeo/etiología , Femenino , Neoplasias Nasofaríngeas/epidemiología , Neoplasias Nasofaríngeas/etiología , Persona de Mediana Edad , Factores de Riesgo , Adulto
12.
Small ; : e2310851, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334256

RESUMEN

Inspired by the timely emergence of silkworm pupae from their cocoons, silkworm chrysalis-like probiotic composites (SCPCs) are developed for the comprehensive therapy of inflammatory bowel disease (IBD), in which probiotics are enveloped as the "pupa" in a sequential layering of silk sericin (SS), tannic acid (TA), and polydopamine, akin to the protective "cocoon". Compared to unwrapped probiotics, these composites not only demonstrate exceptional resistance to the harsh gastrointestinal environment and exhibit over 200 times greater intestinal colonization but also safeguard probiotics from the damage of IBD environment while enabling probiotics sustained release. The probiotics, in synergy with SS and TA, provide a multi-crossed comprehensive therapy for IBD that simultaneously addresses various pathological features of IBD, including intestinal barrier disruption, elevated pro-inflammatory cytokines, heightened oxidative stress, and disturbances in the intestinal microbiota. SCPCs exhibit remarkable outcomes, including a 9.7-fold reduction in intestinal permeability, an 8.9-fold decrease in IL-6 levels, and a 2.9-fold reduction in TNF-α levels compared to uncoated probiotics. Furthermore, SCPCs demonstrate an impressive 92.25% reactive oxygen species clearance rate, significantly enhance the richness of beneficial intestinal probiotics, and effectively diminish the abundance of pathogenic bacteria, indicating a substantial improvement in the overall therapeutic effect of IBD.

13.
Yeast ; 41(7): 458-472, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38874348

RESUMEN

The yeast Saccharomyces cerevisiae and most eukaryotes carry two 5' → 3' exoribonuclease paralogs. In yeast, they are called Xrn1, which shuttles between the nucleus and the cytoplasm, and executes major cytoplasmic messenger RNA (mRNA) decay, and Rat1, which carries a strong nuclear localization sequence (NLS) and localizes to the nucleus. Xrn1 is 30% identical to Rat1 but has an extra ~500 amino acids C-terminal extension. In the cytoplasm, Xrn1 can degrade decapped mRNAs during the last round of translation by ribosomes, a process referred to as "cotranslational mRNA decay." The division of labor between the two enzymes is still enigmatic and serves as a paradigm for the subfunctionalization of many other paralogs. Here we show that Rat1 is capable of functioning in cytoplasmic mRNA decay, provided that Rat1 remains cytoplasmic due to its NLS disruption (cRat1). This indicates that the physical segregation of the two paralogs plays roles in their specific functions. However, reversing segregation is not sufficient to fully complement the Xrn1 function. Specifically, cRat1 can partially restore the cell volume, mRNA stability, the proliferation rate, and 5' → 3' decay alterations that characterize xrn1Δ cells. Nevertheless, cotranslational decay is only slightly complemented by cRat1. The use of the AlphaFold prediction for cRat1 and its subsequent docking with the ribosome complex and the sequence conservation between cRat1 and Xrn1 suggest that the tight interaction with the ribosome observed for Xrn1 is not maintained in cRat1. Adding the Xrn1 C-terminal domain to Rat1 does not improve phenotypes, which indicates that lack of the C-terminal is not responsible for partial complementation. Overall, during evolution, it appears that the two paralogs have acquired specific characteristics to make functional partitioning beneficial.


Asunto(s)
Exorribonucleasas , Estabilidad del ARN , ARN Mensajero , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Citoplasma/metabolismo , Biosíntesis de Proteínas
14.
BMC Microbiol ; 24(1): 123, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622504

RESUMEN

BACKGROUND: Rhizosphere microorganisms are vital in plants' growth and development and these beneficial microbes are recruited to the root-zone soil when experiencing various environmental stresses. However, the effect of white grub (Maladera verticalis) larvae feeding on the structure and function of rhizosphere microbial communities of aerobic rice (Oryza sativa L.) is unclear. RESULTS: In this study, we compared physicochemical properties, enzyme activities, and microbial communities using 18 samples under healthy and M. verticalis larvae-feeding aerobic rice rhizosphere soils at the Yunnan of China. 16 S rRNA and ITS amplicons were sequenced using Illumina high throughput sequencing. M. verticalis larvae feeding on aerobic rice can influence rhizosphere soil physicochemical properties and enzyme activities, which also change rhizosphere microbial communities. The healthy and M. verticalis larvae-feeding aerobic rice rhizosphere soil microorganisms had distinct genus signatures, such as possible_genus_04 and Knoellia genera in healthy aerobic rice rhizosphere soils and norank_f__SC - I-84 and norank_f__Roseiflexaceae genera in M. verticalis larvae-feeding aerobic rice rhizosphere soils. The pathway of the metabolism of terpenoids and polyketides and carbohydrate metabolism in rhizosphere bacteria were significantly decreased after M. verticalis larvae feeding. Fungal parasite-wood saprotroph and fungal parasites were significantly decreased after M. verticalis larvae feeding, and plant pathogen-wood saprotroph and animal pathogen-undefined saprotroph were increased after larvae feeding. Additionally, the relative abundance of Bradyrhizobium and Talaromyces genera gradually increased with the elevation of the larvae density. Bacterial and fungal communities significantly correlated with soil physicochemical properties and enzyme activities, respectively. CONCLUSIONS: Based on the results we provide new insight for understanding the adaptation of aerobic rice to M. verticalis larvae feeding via regulating the rhizosphere environment, which would allow us to facilitate translation to more effective measures.


Asunto(s)
Oryza , Animales , Oryza/microbiología , Larva , Rizosfera , China , Bacterias , Suelo/química , Microbiología del Suelo
15.
Opt Express ; 32(1): 1047-1062, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175120

RESUMEN

The existence of a non-electrically-small scatterer adjacent to the source can severely distort the radiation and lead to a poor electromagnetic compatibility. In this work, we use a conducting hollow cylinder to shield a cylindrical scatterer. The cylinder is shelled with a single dielectric layer enclosed by an electromagnetic metasurface. The relationship between the scattering field and the surface impedance is derived analytically. By optimizing the Fourier expansion coefficients of the surface impedance distribution along ϕ-dimension, the scattering cross-section can be effectively reduced. This unidirectional cloaking method is valid for both TM/TE and non-TM/TE incident field and is not limited to a plane-wave incident field. The accuracy and effectiveness of the method are verified by four cloaking scenarios in microwave regime. We demonstrate that with the surface impedance obtained by the proposed method, a metasurface is designed with physical subwavelength structures. We also show a cloaking scenario under a magnetic dipole radiation, which is closer to the case of a realistic antenna. This method can be further applied to cloaking tasks in terahertz and optical regimes.

16.
Opt Express ; 32(4): 5760-5769, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439294

RESUMEN

Heme is the prosthetic group for cytochrome that exists in nearly all living organisms and serves as a vital component of human red blood cells (RBCs). Tunable optical nonlinearity in suspensions of RBCs has been demonstrated previously, however, the nonlinear optical response of a pure heme (without membrane structure) solution has not been studied to our knowledge. In this work, we show optical nonlinearity in two common kinds of heme (i.e., hemin and hematin) solutions by a series of experiments and numerical simulations. We find that the mechanism of nonlinearity in heme solutions is distinct from that observed in the RBC suspensions where the nonlinearity can be easily tuned through optical power, concentration, and the solution properties. In particular, we observe an unusual phenomenon wherein the heme solution exhibits negative optical nonlinearity and render self-collimation of a focused beam at specific optical powers, enabling shape-preserving propagation of light to long distances. Our results may have potential applications in optical imaging and medical diagnosis through blood.


Asunto(s)
Eritrocitos , Hemo , Humanos , Imagen Óptica
17.
Diabetes Metab Res Rev ; 40(4): e3814, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38769695

RESUMEN

AIMS: This study aimed to evaluate the association between gestational diabetes mellitus (GDM) and circulating folate metabolites, folic acid (FA) intake, and the methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) genotype. MATERIALS AND METHODS: A prospective pregnancy cohort study was conducted in Beijing, China, from 2022 to 2023. Circulating folate metabolites, including red blood cell (RBC) 5-methyltetrahydrofolate (5-MTHF), 5, 10-methylene-tetrahydrofolate (5,10-CH2-THF), 5- formyltetrahydrofolate (5-CHO-THF), and unmetabolised folic acid (UMFA), and plasma homocysteine (HCY), 5-MTHF, and methylmalonic acid (MMA), were determined at 6-17 weeks and 20-26 weeks of gestation. FA intake and the MTHFR and MTRR genotype were also examined. GDM was diagnosed between 24 and 28 weeks of pregnancy by a 75-g oral glucose tolerance test (OGTT). The association between the folate status and GDM was ascertained using multivariate generalised linear models, logistic regression models, and restricted cubic spline regression, adjusting for potential confounders. RESULTS: The study included 2032 pregnant women, of whom 392 (19.29%) developed GDM. UMFA above the 75th percentile (≥P75) [adjusted OR (aOR) (95% confidence interval [CI]) = 1.36 (1.01-1.84)], UMFA ≥ P90 [aOR (95% CI) = 1.82 (1.23-2.69)], and HCY ≥ P75 [aOR (95% CI) = 1.40 (1.04-1.88)] in early pregnancy, and RBC 5-MTHF [aOR (95% CI) = 1.48 (1.10-2.00)], RBC 5,10-CH2-THF [aOR (95% CI) = 1.55 (1.15-2.10)], and plasma 5-MTHF [aOR (95% CI) = 1.36 (1.00-1.86)] in mid-pregnancy ≥ P75 are associated with GDM. Higher UMFA levels in early pregnancy show positive associations with the 1-h and 2-h glucose levels during the OGTT, and higher HCY levels are associated with increased fasting glucose levels during the OGTT. In comparison, RBC 5- MTHF and 5,10-CH2-THF, and plasma 5- MTHF in mid-pregnancy are positively associated with the 1-h glucose level (p < 0.05). The MTHFR and MTRR genotype and FA intake are not associated with GDM. CONCLUSIONS: Elevated levels of UMFA and HCY during early pregnancy, along with elevated RBC 5-MTHF and 5,10-CH2-THF and plasma 5-MTHF during mid-pregnancy, are associated with GDM. These findings indicate distinct connections between different folate metabolites and the occurrence of GDM.


Asunto(s)
Diabetes Gestacional , Ácido Fólico , Metilenotetrahidrofolato Reductasa (NADPH2) , Humanos , Femenino , Diabetes Gestacional/sangre , Diabetes Gestacional/metabolismo , Embarazo , Ácido Fólico/sangre , Estudios Prospectivos , Adulto , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Biomarcadores/sangre , Estudios de Seguimiento , Ferredoxina-NADP Reductasa/genética , Genotipo , China/epidemiología , Pronóstico , Segundo Trimestre del Embarazo/sangre , Homocisteína/sangre , Homocisteína/metabolismo
18.
FASEB J ; 37(3): e22810, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36786718

RESUMEN

Technology at the single-cell level has advanced dramatically in characterizing molecular heterogeneity. These technologies have enabled cell subtype diversity to be seen in all tissues, including atherosclerotic plaques. Critical in atherosclerosis pathogenesis and progression are macrophages. Previous studies have only determined macrophage phenotypes within the plaque, mainly by bulk analysis. However, recent progress in single-cell technologies now enables the comprehensive mapping of macrophage subsets and phenotypes present in plaques. In this review, we have updated and discussed the definition and classification of macrophage subsets in mice and humans using single-cell RNA sequencing. We summarized the different classification methods and perspectives: traditional classification with an updated scoring system, inflammatory macrophages, foamy macrophages, and atherosclerotic-resident macrophages. In addition, some special types of macrophages were identified by specific markers, including IFN-inducible and cavity macrophages. Furthermore, we discussed macrophage subset-specific markers and their functions. In the future, these novel insights into the characteristics and phenotypes of these macrophage subsets within atherosclerotic plaques can provide additional therapeutic targets for cardiovascular diseases.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Ratones , Animales , Placa Aterosclerótica/metabolismo , Aterosclerosis/metabolismo , Macrófagos/metabolismo , Fenotipo , Análisis de Secuencia de ARN/métodos
19.
J Org Chem ; 89(4): 2748-2758, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38277233

RESUMEN

A practical and efficient protocol for synthesis of >99% diastereopure Z- and E-alkenyl nitriles is developed, through tetramethylthiourea-mediated stereospecific deoxygenation of respective cis- and trans-cyanoepoxides in ethanol. The desired products are obtained in excellent yields.

20.
Environ Sci Technol ; 58(1): 617-627, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38112179

RESUMEN

In recent years, the magnitude and frequency of regional ozone (O3) episodes have increased in China. We combined ground-based measurements, observation-based model (OBM), and the Weather Research and Forecasting and Community Multiscale Air Quality (WRF-CMAQ) model to analyze a typical persistent O3 episode that occurred across 88 cities in northeastern China during June 19-30, 2021. The meteorological conditions, particularly the wind convergence centers, played crucial roles in the evolution of O3 pollution. Daily analysis of the O3 formation sensitivity showed that O3 formation was in the volatile organic compound (VOC)-limited or transitional regime at the onset of the pollution episode in 92% of the cities. Conversely, it tended to be or eventually became a NOx-limited regime as the episode progressed in the most polluted cities. Based on the emission-reduction scenario simulations, mitigation of the regional O3 pollution was found to be most effective through a phased control strategy, namely, reduction of a high ratio of VOCs to NOx at the onset of the pollution and lower ratio during evolution of the O3 episode. This study presents a new possibility for regional O3 pollution abatement in China based on a reasonable combination of OBM and the WRF-CMAQ model.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Ozono/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , China , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda