RESUMEN
BACKGROUND AND AIMS: Post-ERCP pneumobilia is not uncommon; however, studies focusing on the long-term prognosis of patients with post-ERCP pneumobilia are limited. This study aimed to explore long-term prognosis and risk factors associated with post-ERCP pneumobilia in patients with common bile duct stones (CBDSs). METHODS: We conducted a retrospective analysis of 1380 patients who underwent ERCP for CBDSs at our hospital from January 2010 to December 2017. Patients were selected based on inclusion and exclusion criteria and divided into pneumobilia and nonpneumobilia groups, followed by propensity score matching. The matched groups were then compared in terms of incidence rates of both single and multiple recurrences of CBDSs, acute cholangitis, and acute cholecystitis. Multivariate logistic regression analysis was used to explore risk factors associated with pneumobilia. RESULTS: After propensity matching, there was no significant difference in the rate of single recurrence of CBDSs (22.5% vs 30%; P = .446) between the pneumobilia and nonpneumobilia groups. However, the incidences of multiple recurrences of CBDSs (32.5% vs 12.5%; P = .032) and acute cholangitis without stone recurrence (32.5% vs 2.5%; P = <.001) were significantly higher in the pneumobilia group. Based on multivariate logistic regression analysis, in addition to a dilated CBD (diameter of >1 cm) (odds ratio [OR], 2.48; 95% confidence interval [CI], 1.03-3.76; P = .043), endoscopic sphincterotomy with moderate incision (OR, 5.38; 95% CI, 1.14-25.47; P = .034) and with large incision (OR, 8.7; 95% CI, 1.83-41.46; P = .007) were identified as independent risk factors for pneumobilia after initial ERCP. CONCLUSIONS: Patients with post-ERCP pneumobilia have increased risk of multiple recurrences of CBDSs and acute cholangitis without stone recurrence. Independent risk factors for pneumobilia include peripapillary diverticulum, a dilated CBD (>1 cm), and endoscopic sphincterotomy with moderate and large incisions. A normal-sized CBD appears to serve as a secondary barrier against enterobiliary reflux, necessitating further research for confirmation.
Asunto(s)
Colangitis , Cálculos Biliares , Humanos , Colangiopancreatografia Retrógrada Endoscópica/efectos adversos , Estudios Retrospectivos , Cálculos Biliares/epidemiología , Cálculos Biliares/cirugía , Esfinterotomía Endoscópica/efectos adversos , Pronóstico , Factores de Riesgo , Colangitis/epidemiología , Colangitis/etiología , Colangitis/cirugía , Conducto Colédoco/cirugíaRESUMEN
Chalcophosphates are an important type of infrared nonlinear optical (NLO) candidates in view of their rich anionic motifs. Here, two copper chalcophosphates Cu3PSe4 (CPSe) and Cs2CuP3S9 (CCPS) were synthesized and studied as IR NLO materials. They both feature three-dimensional polyanionic frameworks constructed by similar T2-supertetrahedra, and the structure of CCPS can be derived from CPSe via introducing Cs and substituting Se with S. This structural evolution results in phase-matchable NLO behavior, enlarged optical band gap, and enhanced laser-induced damage threshold for CCPS. These results are elucidated by structure analysis and theoretical calculations, and the increased structural anisotropy contributes to the phase matchable behavior of CCPS. This work presents a case on how to adjust NLO properties via certain structure considerations, which may be extended to more systems for obtaining high-performance NLO materials.
RESUMEN
As one of the potential candidates of nonlinear-optical (NLO) materials, rare-earth chalcophosphates have demonstrated promising properties. Here, KREP2S6 (RE = Sm, Gd, Tb, Dy) were synthesized using the facile RE2O3-B-S solid-state method. They crystallize with a monoclinic chiral P21 structure, and their layer structures are built by isolated ethane-like P2S6 dimers and RES8 bicapped trigonal prisms built {[RE2S15]24-}∞ layers. By comparing the structures with related ones, the change of the alkali metal or RE3+ ions can cause structural transformation. Their band gaps are tunable between 2.58 and 3.79 eV, and their powder samples exhibit good NLO properties. Theoretical calculations suggest that the NLO properties are mainly contributed by P2S6 units and {[RE2S15]24-}∞ layers synergistically, in which {[RE2S15]24-}∞ layers and P2S6 units dominate the contribution to the band gap and second-harmonic-generation response, respectively. This work enriches the application of rare-earth chalcophosphates as NLO materials.
RESUMEN
Rare-earth (RE) chalcogenides have been extensively studied as infrared nonlinear optical (NLO) materials because of their nice integrated performances; however, very few RE chalcophosphates are involved for this topic. Here, three quaternary RE selenophosphates, KSmP2 Se6 (1), KGdP2 Se6 (2), and KTbP2 Se6 (3), are profoundly studied for their NLO potentials. Their noncentrosymmetric P21 structures feature RESe8-bicapped trigonal prisms and ethane-like [P2 Se6 ]4 - dimers built {[REP2 Se6 ]-}∞ layers. As the first studied NLO-active RE selenophosphates, 1-3 exhibit second harmonic generation (SHG)responses ≈0.34-1.08 × AgGaS2 at 2.10 µm and laser-induced damage thresholds (LIDTs) ≈1.43-4.33 × AgGaS2 , and they all show phase-matchable behaviors, indicating their wonderful balanced NLO properties. Theoretical calculations demonstrate that the synergistic effect between RESe8 and P2 Se6 units makes the major contribution to the SHG responses.
RESUMEN
BACKGROUND: BRAF non-V600 mutation occupies a relatively small but critical subset in colorectal cancer (CRC). However, little is known about the biological functions and impacts of BRAF class III mutation in CRC. Here, we aim to explore how D594A mutation impacts on biological behaviors and immune related signatures in murine CRC cells. METHODS: BRAF V600E (class I), G469V (class II) and D594A (class III) mutant cell lines were established based on MC38 cells. The biological behaviors of cells were evaluated in respect of cell growth, cell proliferation, cell apoptosis, cell migration and invasion by the methods of colony-forming assay, CCK-8 assay, Annexin V/PI staining and transwell assay. The concentrations of soluble cytokines were detected by ELISA. The membrane expression of immuno-modulatory molecules and the pattern of tumor infiltrating lymphocyte were evaluated by flow cytometry. The molecular mechanism was explored by RNA sequencing. Immunohistochemistry (IHC) staining was used for the detection of CD8α in tumor tissues. qRT-PCR and western blot were performed to assess the mRNA and protein expression. Anti-PD-L1 treatment and cytokines neutralization experiments were conducted in in vivo models. RESULTS: D594A mutant cells displayed lower grade malignancy characteristics than V600E (class I) and G469V (class II) mutant cells. Meanwhile, D594A mutation led to evident immuno-modulatory features including upregulation of MHC Class I and PD-L1. In vivo experiments displayed that the frequency of infiltrated CD8+ T cells was significantly high within D594A mutant tumors, which may provide potential response to anti-PD-L1 therapy. RNA sequencing analysis showed that D594A mutation led to enhanced expression of ATF3 and THBS1, which thus facilitated CXCL9 and CXCL10 production upon IFN-γ treatment. In addition, CXCL9 or CXCL10 neutralization reduced the infiltration of CD8+ T cells into THBS1-overexpressing tumors. CONCLUSIONS: D594A mutant CRC exhibited lower aggressiveness and immune-activated phenotype. ATF3-THBS1-CXCL9/CXCL10 axis mediated functional CD8+ T cells infiltration into the microenvironment of D594A mutant CRC. Our present study is helpful to define this mutation in CRC and provide important insights in designing effective immunotherapeutic strategies in clinic.
Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Colorrectales , Animales , Ratones , Neoplasias Colorrectales/patología , Citocinas/genética , Mutación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Microambiente TumoralRESUMEN
An Et3N-catalyzed cascade [3 + 2]-annulation of ß-oxo-acrylamides with cyclic N-sulfonyl ketimines or sulfamate-derived imines is developed under mild reaction conditions, which provides a concise and efficient route to access valuable sultam- or sulfamidate-fused imidazolidinone derivatives in good to excellent yields (80-95% yields) with excellent diastereoselectivities (>20:1 drs). The current protocol features atom economy, a transition-metal-free process, and broad functional group tolerance. Moreover, the asymmetric variant of the [3 + 2]-cycloaddition reaction was achieved in the presence of diphenylethanediamine or quinine-based bifunctional squaramide organocatalysts C-1 and C-11, giving the corresponding chiral polycyclic imidazolidinones in 68-90% yields with 25-94% ees and >20:1 drs in all cases.
RESUMEN
Rare-earth (RE) chalcophosphates have been widely studied because of their abundant structures. Here, five new RE selenophosphates, NaREP2Se6 (RE = Y, Sm, Gd-Dy), were synthesized by a facile RE oxide-boron-selenium solid-state route. They crystallize in the triclinic P1Ì space group, featuring three-dimensional (3D) structures constructed by RESe8 and P2Se6 motifs, different from common 2D RE chalcophosphates A-RE-P2-Q6 (A = alkali metal; Q = S, Se) system. Their structural chemistry and relationship with related phases are analyzed. Both the size of A and the coordination geometry of RE have important influences on the system's structures. Their optical band gaps are tunable from 1.79 to 2.50 eV, and they exhibit diverse magnetic behaviors, including Van-Vleck-type paramagnetism, antiferromagnetism, and ferromagnetism. Their photocurrent responses and thermal stabilities are analyzed as well. Calculation results suggest that the RESe8 and P2Se6 units make a great contribution to the optical properties. This work enriches the chemistry and multifunctional properties of RE chalcophosphates.
RESUMEN
Lewis base-catalyzed cascade nucleophilic/aza-Michael addition reaction of N-alkoxy ß-oxo-acrylamides with isocyanates has been developed to afford various highly functionalized hydantoin derivatives in 80-98% yields under mild reaction conditions. The intriguing features of this method include metal-free reaction conditions, low catalyst loading, broad substrate scope and short reaction time.
RESUMEN
To investigated the mechanisms underlying the effects of modified Kaixin San(MKXS) on improving memory and synaptic damage of Alzheimer's disease(AD) mouse model with conditional presenilin 1/2 conditional double knockout(PS cDKO). Specifically, 60 PS cDKO mice(3-3.5 months old) and their age-matched wild-type(WT) littermates were randomized into three groups: WT group(n=20), PS cDKO group(n=20), and PS cDKO+MKXS group(n=20). Mice in WT and PS cDKO groups were fed with standard chow and those in PS cDKO+MKXS group were given chow containing MKXS(at 2.55 g·kg~(-1)) for 60 days. Novel object reco-gnition task was employed to detect the recognition memory of mice, and Western blot to detect the protein levels of synapse-associated proteins in the hippocampus(HPC) of mice, such as NR1, NR2 A, NR2 B, p-αCaMKâ ¡, tau, and p-tau. Microglial morphology in the HPC CA1 of mice was observed based on immunohistochemistry. Quantitative real time-PCR(qRT-PCR) was employed to detect the mRNA levels of the pro-inflammatory factors and synapse-associated proteins in the HPC of mice, including COX-2, iNOS, IL-1ß, IL-6, TNF-α, PSD95, NR1, NR2 A, NR2 B, and MAP2. The protein levels of IL-1ß, TNF-α, and IL-6 were tested by enzyme-linked immunosorbent assay(ELISA). The interaction between PSD95 and αCaMKâ ¡ and between PSD95 and p-αCaMKâ ¡ was tested by co-immunoprecipitation(Co-IP). The results showed that PS cDKO+MKXS demonstrated significantly higher preference index and recognition index of the new objects, lower protein level of p-tau(ser 396/404) and mRNA levels of COX-2, iNOS, TNF-α, IL-1ß, and IL-6 in HPC, higher protein levels of NR1, NR2 A, NR2 B, and p-αCaMKâ ¡ and mRNA levels of NR1, NR2 A, NR2 B, PSD95, and MAP2, and stronger interaction of αCaMKâ ¡ with PSD95 and interaction of p-αCaMKâ ¡ with PSD95 than the PS cDKO group. Immunohistoche-mical staining showed that MKXS inhibited the activation of microglia. In conclusion, MKXS improves memory and synaptic damage in mice with AD by modulating αCaMKâ ¡-PSD95 protein binding through inhibition of neuroinflammation.
Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Enfermedades Neuroinflamatorias , Factor de Necrosis Tumoral alfa/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Interleucina-6/metabolismo , Unión Proteica , Ratones Noqueados , Hipocampo/metabolismo , Modelos Animales de Enfermedad , ARN Mensajero/metabolismoRESUMEN
Over the past decade, there has been a growing emphasis on investigating the role of immunotherapy in cancer treatment. However, it faces challenges such as limited efficacy, a diminished response rate, and serious adverse effects. Nanozymes, a subset of nanomaterials, demonstrate boundless potential in cancer catalytic therapy for their tunable activity, enhanced stability, and cost-effectiveness. By selectively targeting the metabolic vulnerabilities of tumors, they can effectively intensify the destruction of tumor cells and promote the release of antigenic substances, thereby eliciting immune clearance responses and impeding tumor progression. Combined with other therapies, they synergistically enhance the efficacy of immunotherapy. Hence, a large number of metabolism-regulating nanozymes with synergistic immunotherapeutic effects have been developed. This review summarizes recent advancements in cancer immunotherapy facilitated by nanozymes, focusing on engineering nanozymes to potentiate antitumor immune responses by disturbing tumor metabolism and performing synergistic treatment. The challenges and prospects in this field are outlined. We aim to provide guidance for nanozyme-mediated immunotherapy and pave the way for achieving durable tumor eradication.
Asunto(s)
Inmunoterapia , Nanoestructuras , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Nanoestructuras/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéuticoRESUMEN
BRAF non-V600 mutations are a distinct molecular subset of colorectal cancer (CRC) that has little to no clinical similarity to the BRAF V600 mutations. It is generally considered that the BRAF non-V600 mutations correlate with better survival of CRC patients. In this report, we present an unusual case of that a midlife female patient who was initially diagnosed with stage IIIC colon cancer, and multiple metastases were found 25 months after radical surgery. Next-generation sequencing (NGS) revealed the BRAF p.N581I (c.1742A>T) mutation. She received chemotherapy, targeted therapy, and immunotherapy. However, the disease progressed rapidly with rare metastasis of the bone and cerebellum. This case highlights that the BRAF non-V600 mutations, such as BRAF p.N581I mutant, may lead to resistance to epidermal growth factor receptor (EGFR) inhibitors and result in a rapid course in colorectal cancer. The role of BRAF p.N581I mutation in colorectal cancer demands more attention.
RESUMEN
Neuropathic pain is a severe and debilitating condition caused by damage to the peripheral nerve or central nervous system. Although several mechanisms have been identified, the underlying pathophysiology of neuropathic pain is still not fully understood. Unfortunately, few effective therapies are available for this condition. Therefore, there is an urgent need to investigate the underlying mechanisms of neuropathic pain to develop more effective treatments. Long non-coding RNAs (lncRNAs) have recently gained attention due to their potential to modulate protein expression through various mechanisms. LncRNAs have been implicated in many diseases, including neuropathic pain. This study aimed to identify a novel lncRNA involved in neuropathic pain progression. The lncRNA microarray analysis showed that lncRNA Upregulated in Liver Cancer (HULC) was significantly upregulated in spinal cord tissue of sciatic nerve injury (SNI) rats. Further experiments confirmed that HULC promoted neuropathic pain progression and aggravated H2O2-induced Schwann cell injury. Mechanistically, Sine Oculis Homeobox 1 (SIX1) regulated the transcriptional expression of HULC, and both SIX1 and HULC were involved in neuropathic pain and Schwann cell injury. The results of our research indicate the existence of a previously unknown SIX1/HULC axis that plays a significant role in the development and progression of neuropathic pain, shedding light on the complex mechanisms that underlie this debilitating condition. These findings offer novel insights into the molecular pathways involved in neuropathic pain. This study underscores the potential of targeting lncRNAs as a viable approach to alleviate the suffering of patients with neuropathic pain.
Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , ARN Largo no Codificante , Ratas , Animales , ARN Largo no Codificante/metabolismo , Peróxido de Hidrógeno/metabolismo , Células de Schwann , Traumatismos de los Nervios Periféricos/genética , Neuralgia/genética , Neuralgia/metabolismo , Estrés Oxidativo , Nervio CiáticoRESUMEN
Background/purpose: Minimally invasive endodontics has recently become popular in research. This study aimed to develop a new quantifiable straight-line minimally invasive endodontic cavity (SMIEC) for 3-rooted maxillary first molar based on the anatomical features of the coronal part of root canal. Materials and methods: Cone-beam computed tomography (CBCT) images of 80 teeth were converted into models in Mimics Research software. Anatomical features of the coronal part of root canal were measured to develop SMIECs with straight-line accesses to root canals in 3-matic Research software. Twenty models were randomly sampled and each was duplicated for 8 simulation groups: non-treated (NT), traditional endodontic cavity (TEC), ninja endodontic cavity (NEC) and 5 SMIECs. Post-simulation models were subjected to finite element analysis to detect von-Mises stresses in ABAQUS software. Results: Distributions of straight-line accesses to protogenetic root canals had certain manners, hence we developed 5 SMIECs. NEC and SMIECs had less hard tissue loss than TEC and presented different numerical rankings in different structures (P < 0.05). NEC had a less narrow surgery field than SMIECs except SMIEC2/4 (P < 0.05). The peak pericervical stresses of SMIECs were similar, lower than TEC and higher than NEC and NT (P < 0.05). The stress distributions of the 8 groups had certain manners. Conclusion: Five SMIECs with straight-line accesses to root canals were developed, whose biomechanical properties were worse than NEC but better than TEC. Having appropriate structure preservation and surgery field, SMIEC2/4 was a preferred SMIEC.
RESUMEN
Background: Compared to other subtypes, the CMS4 subtype is associated with lacking of effective treatments and poorer survival rates. Methods: A total of 24 patients with CRC were included in this study. DNA and RNA sequencing were performed to acquire somatic mutations and gene expression, respectively. MATH was used to quantify intratumoral heterogeneity. PPI and survival analyses were performed to identify hub DEGs. Reactome and KEGG analyses were performed to analyze the pathways of mutated or DEGs. Single-sample gene set enrichment analysis and Xcell were used to categorize the infiltration of immune cells. Results: The CMS4 patients had a poorer PFS than CMS2/3. CTNNB1 and CCNE1 were common mutated genes in the CMS4 subtype, which were enriched in Wnt and cell cycle signaling pathways, respectively. The MATH score of CMS4 subtype was lower. SLC17A6 was a hub DEG. M2 macrophages were more infiltrated in the tumor microenvironment of CMS4 subtype. The CMS4 subtype tended to have an immunosuppressive microenvironment. Conclusion: This study suggested new perspectives for exploring therapeutic strategies for the CMS4 subtype CRC.
Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/patología , Resultado del Tratamiento , Análisis de Supervivencia , Macrófagos/metabolismo , Genómica , Microambiente Tumoral/genéticaRESUMEN
Chronic neuroinflammation has been regarded as an important part of the pathological initiation of Alzheimer's disease (AD), which is associated with the regulation of microglial activation. Preventing microglial activation to inhibit neuroinflammation may become a potential target for the treatment of neurodegenerative diseases. Guizhi Fuling capsule (GZFL) has a strong repression on inflammatory responses. Here, the presenilin1/2 conditional double knockout (PS cDKO) mice, a well-established mouse model of AD, were divided into: WT mice (WT), WT mice+GZFL (WT+GZFL), PS cDKO mice (cDKO), and PS cDKO mice+GZFL (cDKO+GZFL). Mice in the WT+GZFL and cDKO+GZFL group were fed standard chow containing 2000 ppm GZFL for 90 days. After 60 days of GZFL treatment, mice were given to behavioral tests for 30 days in order to explore the effects of GZFL on cognitive and motor function. Then, mice were sacrificed for examining the effects of GZFL on inflammation. Furthermore, primary microglia were obtained from neonatal Sprague-Dawley rats and pretreated with or without GZFL (50 µg/ml) for 1 h in the absence or presence of lipopolysaccharide (LPS) (100 ng/ml) stimulation to speculate whether the underlying mechanism of GZFL's anti-inflammatory potential was closely associated with Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Our findings indicated that GZFL has the ability to alleviate memory deficits in PS cDKO mice, which attributes to the improvement of neuroinflammation by inhibiting microglial activation and the levels of pro-inflammatory mediators. In addition, GZFL could inverse the tau hyperphosphorylation and the lessened expression of synaptic proteins in hippocampus of PS cDKO mice. Furthermore, GZFL prevented LPS-induced neuroinflammatory responses in primary microglia by decreasing the levels of pro-inflammatory mediators. It is noteworthy that therapeutic effects of GZFL on memory impairment are depended on the inhibition of neuroinflammatory responses by the blockage of JAK2/STAT3 signaling pathway. Taken together, GZFL may be an effective compound Chinese medicine for the improvement and postponement of neurodegenerative progression in AD.
Asunto(s)
Enfermedad de Alzheimer , Wolfiporia , Ratas , Ratones , Animales , Ratones Noqueados , Microglía/metabolismo , Wolfiporia/metabolismo , Enfermedades Neuroinflamatorias , Lipopolisacáridos/farmacología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Ratas Sprague-Dawley , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Inflamación/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológicoRESUMEN
PURPOSE: Colon cancer is the most common malignant tumor in the intestine. Abnormal Carboxylesterases 3 (CES3) expression had been reported to be correlated to multiple tumor progression. However, the association among CES3 expression and prognostic value and immune effects in colonic adenocarcinoma (COAD) were unclear. PATIENTS AND METHODS: The transcription and expression data of CES3 and corresponding clinical information was downloaded from The Cancer Genome Atlas (TCGA). The CES3 protein expression and the prognostic value were verified based on tissue microarray data. The Cancer immune group Atlas (TCIA), Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and the GSE78220 immunotherapy cohort were used to forecast immunotherapy efficacy. Finally, a prognostic immune signature was constructed and verified. RESULTS: Compared with normal colon tissues, the expression of mRNA and protein levels of CES3 were downregulated in tumor tissues. CES3 expression was associated with TIICs. Hihg-CES3 COAD patients had better efficacy of concurrent immunotherapy. CES3-related immune genes (CRIs) were identified and were then used to construct prognostic immune signature and had been successfully verified in GES39582. CONCLUSION: CES3 might be a potential immune-related gene and promising prognostic biomarker in COAD.
RESUMEN
RelB confers the aggressiveness to prostate cancer (PC) cells. Exosomes modulate the oncogenesis and progression of PC. We aimed to identify the downstream molecule in the exosomes, by which RelB increases the aggressiveness of DU145. Totally, 137 upregulated and 55 downregulated exosomal proteins were identified from RelB-knockdown DU145 cells by Liquid Chromatography-Mass Spectrometry. UALCAN, GeneMANIA and tissue microarray analysis revealed that intercellular adhesion molecule-1 (ICAM1) was positively related to and co-expressed with RelB in PC. Luciferase reporter assay revealed that RelB bound directly to the promoter of ICAM1. ICAM1 overexpression enhanced the migration and invasion abilities of DU145 cells. Exposure to exosomes derived from ICAM1 overexpressing cells (hICAM1-exo) strengthened the aggressiveness of RelB-knockdown cells, especially the migration and invasion capabilities. Mechanistically, the expression of ICAM1, Integrin ß1, MMP9 and uPA were upregulated in RelB-knockdown cells upon hICAM1-exo treatment. Exosomal ICAM1 is the key molecule regulated by RelB, which increased the aggressiveness of DU145. The study suggests that cell-cell communication via exosomal ICAM1 is a novel mechanism by which RelB promotes PC progression.
Asunto(s)
Exosomas , MicroARNs , Neoplasias de la Próstata , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Exosomas/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , MicroARNs/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Factor de Transcripción ReIB/genética , Factor de Transcripción ReIB/metabolismoRESUMEN
Aim: The treatment of Alzheimer's disease (AD) is still a worldwide problem due to the unclear pathogenesis and lack of effective therapeutic targets. In recent years, metabolomic and gut microbiome changes in patients with AD have received increasing attention, and the microbiome-gut-brain (MGB) axis has been proposed as a new hypothesis for its etiology. Considering that electroacupuncture (EA) efficiently moderates cognitive deficits in AD and its mechanisms remain poorly understood, especially regarding its effects on the gut microbiota, we performed urinary metabolomic and microbial community profiling on EA-treated AD model mice, presenilin 1/2 conditional double knockout (PS cDKO) mice, to observe the effect of EA treatment on the gut microbiota in AD and find the connection between affected gut microbiota and metabolites. Materials and methods: After 30 days of EA treatment, the recognition memory ability of PS cDKO mice was evaluated by the Y maze and the novel object recognition task. Urinary metabolomic profiling was conducted with the untargeted GC-MS method, and 16S rRNA sequence analysis was applied to analyze the microbial community. In addition, the association between differential urinary metabolites and gut microbiota was clarified by Spearman's correlation coefficient analysis. Key findings: In addition to reversed cognitive deficits, the urinary metabolome and gut microbiota of PS cDKO mice were altered as a result of EA treatment. Notably, the increased level of isovalerylglycine and the decreased levels of glycine and threonic acid in the urine of PS cDKO mice were reversed by EA treatment, which is involved in glyoxylate and dicarboxylate metabolism, as well as glycine, serine, and threonine metabolism. In addition to significantly enhancing the diversity and richness of the microbial community, EA treatment significantly increased the abundance of the genus Mucispirillum, while displaying no remarkable effect on the other major altered gut microbiota in PS cDKO mice, norank_f_Muribaculaceae, Lactobacillus, and Lachnospiraceae_NK4A136 group. There was a significant correlation between differential urinary metabolites and differential gut microbiota. Significance: Electroacupuncture alleviates cognitive deficits in AD by modulating gut microbiota and metabolites. Mucispirillum might play an important role in the underlying mechanism of EA treatment. Our study provides a reference for future treatment of AD from the MGB axis.
RESUMEN
Background: Breast cancer (BRCA) is the most common malignancy with high heterogeneity in women, and the prognostic prediction for BRCA has remained poor. Ferroptosis, a recently identified iron-dependent form of programmed cell death, plays a significant role in BRCA treatment. Some BRCA cell lines are proven to be sensitive to ferroptosis, and some ferroptosis-related genes have been identified as divers or suppressors in the progress of BRCA. This study aimed to explore the prognostic value of ferroptosis-related genes in BRCA. Methods: A ferroptosis-related gene list, messenger RNA (mRNA) gene expression of BRCA patients, and corresponding clinicopathological data were collected from public databases. The patients of the Cancer Genome Atlas (TCGA) were identified as the training cohort, and the ones of the Gene Expression Omnibus (GEO) were looked as the validation cohort. Univariate Cox regression analysis was utilized to identify prognostic ferroptosis-related genes, and subsequent multivariate analysis further screened out important genes to establish a prognostic model. Receiver operating characteristic (ROC) curves were used to validate the model in both internal and external cohorts. Functional analysis was generated to evaluate the potential correlation between tumor immunity and ferroptosis-related genes in BRCA. Results: A ferroptosis-related gene signature stratifying patients into 2 risk score groups was established based on the TCGA cohort, and validated in the GEO cohort. Patients with lower risk scores had better overall survival (OS) compared to those with higher risk scores (P<0.001, TCGA cohort; P<0.05, GEO cohort). The risk score was independently associated with the OS of BRCA patients (P<0.001, TCGA cohort; P<0.05, GEO cohort). The area under the curves (AUCs) of the model in the training and validation cohorts were all around 0.7. Immune-related biological pathways and immune status were significantly different between the 2 divided risk groups. Conclusions: The novel prognostic model composed of 9 ferroptosis-related genes accurately predicts the survival of BRCA patients. It might provide a new sight for ferroptosis-related BRCA therapy.
RESUMEN
Exploration of optoelectronic memristors with the capability to combine sensing and processing functions is required to promote development of efficient neuromorphic vision. In this work, the authors develop a plasmonic optoelectronic memristor that relies on the effects of localized surface plasmon resonance (LSPR) and optical excitation in an Ag-TiO2 nanocomposite film. Fully light-induced synaptic plasticity (e.g., potentiation and depression) under visible and ultraviolet light stimulations is demonstrated, which enables the functional combination of visual sensing and low-level image pre-processing (including contrast enhancement and noise reduction) in a single device. Furthermore, the light-gated and electrically-driven synaptic plasticity can be performed in the same device, in which the spike-timing-dependent plasticity (STDP) learning functions can be reversibly modulated by visible and ultraviolet light illuminations. Thereby, the high-level image processing function, i.e., image recognition, can also be performed in this memristor, whose recognition rate and accuracy are obviously enhanced as a result of image pre-processing and light-gated STDP enhancement. Experimental analysis shows that the memristive switching mechanism under optical stimulation can be attributed to the oxidation/reduction of Ag nanoparticles due to the effects of LSPR and optical excitation. The authors' work proposes a new type of plasmonic optoelectronic memristor with fully light-modulated capability that may promote the future development of efficient neuromorphic vision.