Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Arch Biochem Biophys ; 543: 40-7, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24374034

RESUMEN

Hypoxia-inducible factor-1 (HIF-1) can activate expression of a broad range of genes in response to hypoxia. It has been shown that the levels of peroxisome proliferator-activated receptor γ (PPARγ) are influenced by changes in oxygen tension, and PPARγ plays a critical role in metabolism regulation and cancers. In this research, we observed an increased PPARγ mRNA and protein levels in company with increased HIF-1 protein levels in HepG2 cells in hypoxia as compared with in normoxia. Enforced expression of HIF-1α induced PPARγ1 and PPARγ2 expression, while knockdown of HIF-1α by small interference RNA deduced PPARγ1 and PPARγ2 expression in HepG2 cells under hypoxic conditions. By dual-luciferase reporter assay and chromatin immunoprecipitation assay we confirmed a functional hypoxic response element (HRE) localized at 684bp upstream of the transcriptional start site (TSS) of PPARγ1 and a functional HRE localized at 204bp downstream of the TSS of PPARγ2 in HepG2 cells. Additionally we observed an increase and co-presence of PPARγ and HIF-1α, and a highly positive correlation between PPARγ expression and HIF-1α expression (r=0.553, p<0.0001), in the same tumor tissue areas of hepatocellular carcinoma patients. Our data suggested a new mechanism of hepatocellular carcinoma cells response to hypoxia.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Hipoxia de la Célula , Células Hep G2 , Humanos , Elementos de Respuesta/genética , Regulación hacia Arriba
2.
Biochem J ; 441(2): 675-83, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21970364

RESUMEN

Metabolism under hypoxia is significantly different from that under normoxia. It has been well elucidated that HIF-1 (hypoxia-inducible factor-1) plays a central role in regulating glucose metabolism under hypoxia; however, the role of HIF-1 in lipid metabolism has not yet been well addressed. In the present study we demonstrate that HIF-1 promotes LDL (low-density lipoprotein) and VLDL (very-LDL) uptake through regulation of VLDLR (VLDL receptor) gene expression under hypoxia. Increased VLDLR mRNA and protein levels were observed under hypoxic or DFO (deferoxamine mesylate salt) treatment in MCF7, HepG2 and HeLa cells. Using dual-luciferase reporter and ChIP (chromatin immunoprecipitation) assays we confirmed a functional HRE (hypoxia-response element) which is localized at +405 in exon 1 of the VLDLR gene. Knockdown of HIF1A (the α subunit of HIF-1) and VLDLR, but not HIF2A (the α subunit of HIF-2), attenuated hypoxia-induced lipid accumulation through affecting LDL and VLDL uptake. Additionally we also observed a correlation between HIF-1 activity and VLDLR expression in hepatocellular carcinoma specimens. The results of the present study suggest that HIF-1-mediated VLDLR induction influences intracellular lipid accumulation through regulating LDL and VLDL uptake under hypoxia.


Asunto(s)
Factor 1 Inducible por Hipoxia/fisiología , Hipoxia/metabolismo , Lipoproteínas LDL/metabolismo , Lipoproteínas VLDL/metabolismo , Receptores de LDL/biosíntesis , Línea Celular Tumoral , Humanos
3.
J Cell Mol Med ; 16(8): 1889-99, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22050843

RESUMEN

Hypoxia-inducible factor promotes erythropoiesis through coordinated cell type-specific hypoxia responses. GATA1 is essential to normal erythropoiesis and plays a crucial role in erythroid differentiation. In this study, we show that hypoxia-induced GATA1 expression is mediated by HIF1 in erythroid cells. Under hypoxic conditions, significantly increased GATA1 mRNA and protein levels were detected in K562 cells and erythroid induction cultures of CD34(+) haematopoietic stem/progenitor cells. Enforced HIF1α expression increased GATA1 expression, while HIF1α knockdown by RNA interference decreased GATA1 expression. In silico analysis revealed one potential hypoxia response element (HRE). The results from reporter gene and mutation analysis suggested that this element is necessary for hypoxic response. Chromatin immunoprecipitation (ChIP)-PCR showed that the putative HRE was recognized and bound by HIF1 in vivo. These results demonstrate that the up-regulation of GATA1 during hypoxia is directly mediated by HIF1.The mRNA expression of some erythroid differentiation markers was increased under hypoxic conditions, but decreased with RNA interference of HIF1α or GATA1. Flow cytometry analysis also indicated that hypoxia, desferrioxamine or CoCl(2) induced expression of erythroid surface markers CD71 and CD235a, while expression repression of HIF1α or GATA1 by RNA interference led to a decreased expression of CD235a. These results suggested that HIF1-mediated GATA1 up-regulation promotes erythropoiesis in order to satisfy the needs of an organism under hypoxic conditions.


Asunto(s)
Diferenciación Celular/genética , Células Eritroides/citología , Células Eritroides/metabolismo , Factor de Transcripción GATA1/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Secuencia de Bases , Hipoxia de la Célula/genética , Inmunoprecipitación de Cromatina , Citometría de Flujo , Factor de Transcripción GATA1/metabolismo , Regulación de la Expresión Génica , Humanos , Células K562 , Células MCF-7 , Datos de Secuencia Molecular , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Elementos de Respuesta/genética
4.
BMB Rep ; 45(4): 247-52, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22531136

RESUMEN

Although previous studies have demonstrated that BMP9 is highly capable of inducing osteogenic differentiation of mesenchymal stem cells, the molecular mechanism involved remains to be fully elucidated. In this study, we showed that BMP9 simultaneously promotes the activation of Smad1/5/8, p38 and ERK1/2 in C3H10T1/2 cells. Knockdown of Smad4 with RNA interference reduced nuclear translocation of Smad1/5/8, and disrupted BMP9-induced osteogenic differentiation. BMP9-induced osteogenic differentiation was blocked by p38 inhibitor SB203580, whereas enhanced by ERK1/2 inhibitor PD98059. SB203580 decreased BMP9-activated Smads singling, and yet PD98059 stimulated Smads singling in C3H10T1/2 cells. The effects of inhibitor were reproduced with adenovirus expressing siRNA targeted p38 and ERK1/2, respectively. Taken together, our findings revealed that Smads, p38 and ERK1/2 are involved in BMP9-induced osteogenic differentiation. Also, it is noteworthy that p38 and ERK1/2 may play opposing regulatory roles in mediating BMP9-induced osteogenic differentiation of C3H10T1/2 cells.


Asunto(s)
Diferenciación Celular , Factor 2 de Diferenciación de Crecimiento/metabolismo , Células Madre Mesenquimatosas/citología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Osteogénesis/fisiología , Proteínas Smad/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Western Blotting , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Inhibidores Enzimáticos/farmacología , Técnica del Anticuerpo Fluorescente , Luciferasas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/genética , Fosforilación , ARN Interferente Pequeño/genética , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 30(7): 1526-9, 2010 Jul.
Artículo en Zh | MEDLINE | ID: mdl-20650757

RESUMEN

OBJECTIVE: To construct a retroviral vector carrying HBX gene and investigate its expression in LO2 human hepatocytes. METHODS: HBX gene was amplified by PCR and subcloned into the retroviral vector pSEB-Flag to construct a retroviral plasmid (pSEB-Flag-HBX) expressing HBX. The HBX gene insert was confirmed by restriction enzyme digestion, PCR and DNA sequencing. The recombinant retroviruses carrying HBX gene were generated in 293T cells co-transfected with pSEB-Flag-HBX and the packaging plasmids pAmpho, and used to infect LO2 human hepatocyte. After selection with blasticidin, the mRNA and protein expressions of HBx were determined by the reverse transcription-PCR and Western blotting, respectively. RESULTS: The retroviral plasmid (pSEB-Flag-HBX) carrying HBX was constructed successfully. The recombinant retrovirus efficiently delivered HBX gene into LO2 human hepatocyte, resulting in stable expression of HBX mRNA and HBx protein as shown by RT-PCR and Western blotting, respectively. CONCLUSION: The recombinant retrovirus pSEB-Flag-HBX has been successfully constructed, which is capable of delivering the target gene HBX into LO2 human hepatocytes and results in stable expression of HBx to serve as an ideal model to study the effect of HBx on the development of hepatocellular carcinoma.


Asunto(s)
Vectores Genéticos , Retroviridae/genética , Transactivadores/biosíntesis , Transactivadores/genética , Línea Celular , Expresión Génica , Hepatocitos/citología , Humanos , Plásmidos , ARN Mensajero/genética , Transfección , Proteínas Reguladoras y Accesorias Virales
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda