Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Small ; : e2407980, 2024 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-39479739

RESUMEN

The development of novel catalysts for the rapid detoxification of sulfur mustard holds paramount importance in the field of military defense. In this work, titanium dioxide-phosphomolybdic acid sub-1 nm nanobelts (TiO2/PMA SNBs) are employed as effective catalysts for the ultra-fast degradation of mustard gas simulants (2-chloroethyl ethyl sulfide, CEES) with 100% selectivity and a half-life (t1/2, time required for 50% conversion) as short as 12 s, which is the fastest time to the best of the knowledge. Even in dark conditions, this material can still achieve over 90% conversion within 5 min. A mechanism study reveals that the rapid generation rate of 1O2 and O2 •- in the presence of TiO2/PMA SNBs and H2O2 plays a crucial role in facilitating the efficient oxidation of CEES. A filter layer of a gas mask loaded with TiO2/PMA SNBs and H2O2/polyvinylpyrrolidone cross-linked complex (PHP) is constructed, which demonstrates remarkable stability and exhibits exceptional efficacy in the detoxification of CEES in the presence of a small amount of water. This innovation offers great potential for enhancing personal protective equipment in practical applications.

2.
Anal Chem ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36633481

RESUMEN

Owing to the excellent structural rigidity and programmable reaction sites, DNA nanostructures are more and more widely used, but they are limited by high cost, strict sequence requirements, and time-consuming preparation. Herein, a general signal amplifier based on a micelle-supported entropy-driven circuit (MEDC) was designed and prepared for sensitive quantification of biomarkers. By modifying a hydrophobic cholesterol molecule onto a hydrophilic DNA strand, the amphiphilic DNA strand was first prepared and then self-assembled into DNA micelles (DMs) driven by hydrophobic effects. The as-developed DM showed unique advantages of sequence-independence, easy preparation, and low cost. Subsequently, amplifier units DMF and DMTD were successfully fabricated by connecting fuel strands and three-strand duplexes (TDs) to DMs, respectively. Finally, the MEDC was triggered by microRNA-155 (miR-155), which herein acted as a model analyte, resulting in dynamic self-assembly of poly-DNA micelles (PDMs) and causing the recovery of cyanine 3 (Cy3) fluorescence as the DMTD dissociated. Benefiting from the "diffusion effect", the MEDC herein had a nearly 2.9-fold increase in sensitivity and a nearly 97-fold reduction in detection limit compared to conventional EDC. This amplifier exhibited excellent sensitivity of microRNAs, such as miR-155 detection in a dynamic range from 0.05 to 4 nM with a detection limit of 3.1 pM, and demonstrated outstanding selectivity with the distinguishing ability of a single-base mismatched sequence of microRNAs. Overall, the proposed strategy demonstrated that this sequence-independent DNA nanostructure improved the performance of traditional DNA probes and provided a versatile method for the development of DNA nanotechnology in biosensing.

3.
Anal Chem ; 95(19): 7603-7610, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37129512

RESUMEN

System leakage critically confines the development of cascade DNA systems that need to be implemented in a strict order-by-order manner. In principle, ternary DNA reactants, composed of three single-strand DNA (ssDNA) with a strict equimolar ratio (1:1:1), have been indispensable for successfully cascading upstream entropy-driven DNA circuit (EDC) with downstream circuits, and system leakage will occur with any unbalance of the molar ratio. In this work, we proposed "splitting-reconstruction" and "protection-release" strategies on the potential downstream circuit initiator derived from upstream EDC to guide the construction of EDC-involved cascade systems independent of system leakage derived from unpurified reactants. Both the reconstructed and released downstream circuit initiators were in compliance with the principle of the cascade AND logic gate. Using these two strategies, two cascade systems─EDC2-4WJ-TMSDR and EDC3-HCR─were developed to carry out the designed order, which did not require that the ratio of 1:1:1 be maintained. Furthermore, the inherent property of the upstream EDC could transfer into the downstream circuit, endowing the developed cascade systems with a more powerful signal amplification ability for the sensitive detection of the corresponding initiator strand. These two strategies may provide new insights into the process of constructing EDC-like circuit-involved high-order DNA networks.


Asunto(s)
ADN de Cadena Simple , ADN , ADN/genética , ADN de Cadena Simple/genética , Entropía , Lógica
4.
Anal Chem ; 95(18): 7237-7243, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37120835

RESUMEN

DNA nanosheets (DNSs) have been utilized effectively as a fluorescence anisotropy (FA) amplifier for biosensing. But, their sensitivity needs to be further improved. Herein, CRISPR-Cas12a with strong trans-cleavage activity was utilized to enhance the FA amplification ability of DNSs for the sensitive detection of miRNA-155 (miR-155) as a proof-of-principle target. In this method, the hybrid of the recognition probe of miR-155 (T1) and a blocker sequence (T2) was immobilized on the surface of magnetic beads (MBs). In the presence of miR-155, T2 was released by a strand displacement reaction, which activated the trans-cleavage activity of CRISPR-Cas12a. The single-stranded DNA (ssDNA) probe modified with a carboxytetramethylrhodamine (TAMRA) fluorophore was cleaved in large quantities and could not bind to the handle chain on DNSs, inducing a low FA value. In contrast, in the absence of miR-155, T2 could not be released and the trans-cleavage activity of CRISPR-Cas12a could not be activated. The TAMRA-modified ssDNA probe remained intact and was complementary to the handle chain on the DNSs, and a high FA value was obtained. Thus, miR-155 was detected through the obviously decreased FA value with a low limit of detection (LOD) of 40 pM. Impressively, the sensitivity of this method was greatly improved about 322 times by CRISPR-Cas12a, confirming the amazing signal amplification ability of CRISPR-Cas12a. At the same time, the SARS-CoV-2 nucleocapsid protein was detected by the strategy successfully, indicating that this method was general. Moreover, this method has been applied in the analysis of miR-155 in human serum and the lysates of cells, which provides a new avenue for the sensitive determination of biomarkers in biochemical research and disease diagnosis.


Asunto(s)
Técnicas Biosensibles , COVID-19 , MicroARNs , Humanos , SARS-CoV-2 , ADN , ADN de Cadena Simple , Sistemas CRISPR-Cas/genética
5.
Anal Chem ; 95(29): 10992-10998, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37436093

RESUMEN

Challenges remained in precisely real-time monitoring of apoptotic molecular events at the subcellular level. Herein, we developed a new type of intelligent DNA biocomputing nanodevices (iDBNs) that responded to mitochondrial microRNA-21 (miR-21) and microRNA-10b (miR-10b) simultaneously which were produced during cell apoptosis. By hybridizing two hairpins (H1 and H2) onto DNA nanospheres (DNSs) that had been previously modified with mitochondria-targeted triphenylphosphine (TPP) motifs, iDBNs were assembled in which two localized catalytic hairpins self-assembly (CHA) reactions occurred upon the co-stimulation of mitochondrial miR-21 and miR-10b to perform AND logic operations, outputting fluorescence resonance energy transfer (FRET) signals for sensitive intracellular imaging during cell apoptosis. Owing to the spatial confinement effects of DNSs, it was discovered that iDBNs had a high efficiency and speed of logic operations by high local concentrations of H1 and H2, making the simultaneous real-time responses of mitochondrial miR-21 and miR-10b reliable and sensitive during cell apoptosis. These results demonstrated that iDBNs were simultaneously responsive to multiple biomarkers, which greatly improved the detection accuracy to identify the cell apoptosis, demonstrating that iDBNs are highly effective and reliable for the diagnosis of major disease and screening of anticancer drugs.


Asunto(s)
MicroARNs , MicroARNs/genética , ADN , Apoptosis , Biomarcadores
6.
Neoplasma ; 70(1): 145-157, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36916930

RESUMEN

Growing evidence has indicated that circular RNAs (circRNAs) play crucial roles in the tumorigenesis and progression of diverse malignancies. However, the majority of circRNAs involved in esophageal squamous cell carcinoma (ESCC) remain undefined and the exact functions and underlying mechanisms of circRNAs in ESCC still need further exploration. In this study, we identified a novel onco-circRNA hsa_circ_0002938, derived from the exons of cysteine-rich transmembrane BMP regulator 1 (CRIM1) pre-mRNA, referred to as circCRIM1. We found that the expression of circCRIM1 was higher in ESCC tissues, compared to para-carcinoma tissues. Increased expression of circCRIM1 was positively correlated with clinical parameters of ESCC patients including tumor-node-metastasis (TNM) stage, tumor invasion range, and lymph node metastasis. Functionally, the results from the experiments in vitro showed that the knockdown of circCRIM1 suppressed proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in ESCC cells. By conducting bioinformatics algorithms analyses and microRNA (miRNA) rescue experiments, we found that circCRIM1 could act as a competing endogenous RNA (ceRNA) to sponge miR-342-3p in ESCC cells, and thereby upregulated the expression of transcription factor 12 (TCF12), a key regulator promoting the EMT process. Taken together, circCRIM1 facilitates the progression of ESCC by sponging miR-342-3p to regulate TCF12 and promote EMT, and the circCRIM1/miR-342-3p/TCF12 axis may be regarded as a potential predictive biomarker and therapeutic target for treating ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética
7.
Anal Chem ; 94(39): 13440-13446, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36130106

RESUMEN

Plasmon-driven catalysis of metal nanostructures has garnered wide interest. Here, a photogenerated plasmonic hot-electron painting strategy was reported to form Au@Pt composite nanoparticles (Au@Pt NPs) with high catalytic reactivity without using reducing agents. Au nanoparticles, including Au nanospheres (Au NSs), Au nanorods (Au NRs), and Au nanobipyramids (Au NBPs), generated hot electrons under localized surface plasmon resonance (LSPR) excitation, which made the platinum precursor reduced as a consequence that Pt(0) atoms were painted on the surface of Au NPs to form an asymmetric Pt shell outside the plasmonic Au core. Compared with bare Au NPs, Au@Pt NPs exhibited significantly enhanced electrocatalytic activity toward reduction of H2O2 due to the bimetallic synergistic effect and great dispersion of Au@Pt NP-modified indium tin oxide (Au@Pt NPs/ITO). It exhibited a linear detection of H2O2 in a wide concentration range from 0.5 to 1000 µM with a low detection limit of 0.11 µM (S/N = 3). Therefore, the plasmonic hot-electron-painted Au@Pt NPs represent a novel and simple method for the design of advanced noble asymmetric metal nanomaterials.


Asunto(s)
Oro , Nanopartículas del Metal , Electrones , Oro/química , Peróxido de Hidrógeno/química , Nanopartículas del Metal/química , Platino (Metal)/química , Sustancias Reductoras
8.
Chemistry ; 28(54): e202201437, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-35735906

RESUMEN

Metal-organic frameworks (MOFs) with abundant active sites, a class of materials composed of metal nodes and organic ligands, is widely used for photocatalytic degradation of pollutants. However, the rapid recombination of photoinduced carriers of MOFs limits its photocatalytic degradation performance. Herein, Ti3 C2 Tx nanosheets-based NH2 -MIL-101(Fe) hybrids with Schottky-heterojunctions were fabricated by in situ hydrothermal assembly for improved photocatalytic activity. The photodegradation efficiencies of the NH2 -MIL-101(Fe)/Ti3 C2 Tx (N-M/T) hybrids for phenol and chlorophenol were 96.36 % and 99.83 % within 60 minutes, respectively. The N-M/T Schottky-heterojunction duly transferred electrons to the Ti3 C2 Tx nanosheets surface via built-in electric fields, effectively suppressing the recombination of photogenerated carriers, thereby improving the photocatalytic performance of NH2 -MIL-101(Fe). Moreover, the Fe-mixed-valence in the N-M/T led to improvement in the efficiency of the in situ generated photo-Fenton reactions, further enhancing the photocatalytic activity with more generated reactive oxygen species (ROS). The study proposes a highly effective removal of phenolic pollutants in wastewater.


Asunto(s)
Clorofenoles , Contaminantes Ambientales , Estructuras Metalorgánicas , Ligandos , Estructuras Metalorgánicas/química , Fenoles , Especies Reactivas de Oxígeno , Titanio , Aguas Residuales
9.
Indoor Air ; 32(10): e13140, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36305075

RESUMEN

We had previously developed an improved Ames module to directly determine the mutagenicity of gaseous formaldehyde (HCHO) and toluene without liquid extraction. This study further evaluated the suitability and sensitivity of this module on whole and real polluted air samples. For this, two common brands of stick incense (A and B) and cigarettes (A and B) were harvested, and various types of incense smoke (IS) and sidestream cigarette smoke (SCS) samples were generated by lighting 3, 6, 12, 24, 30, or 36 incense sticks, and by lighting 1, 2, or 3 cigarettes, respectively, in an acrylic box. CO2 , CO, total volatile organic compound (TVOC), PM1.0, and HCHO concentrations in the air samples were determined, and all air samples did not partially fit the requirements of the air quality standards. The smoke samples were then directly exposed to TA100 for 10, 20, 30, or 60 min in our exposure module. Exposure to IS (brand A) for 30 to 60 min and exposure to IS (brand B) for 60 min led to statistically (p < 0.05) weak (below the twofold rule) but dose-dependent mutagenic activities either with or without metabolic activation. Furthermore, a short-term exposure (10-60 min) to SCS (brands A and B) displayed statistically significant (p < 0.05) direct-acting, indirect-acting, time- and dose-dependent mutagenic activities. Furthermore, our data also support that the liver S9 enzyme could enhance the mutagenic activities in most IS and SCS samples. This study confirmed that the modified Ames module can be applied to directly detect the mutagenic activities of real polluted air samples.


Asunto(s)
Contaminación del Aire Interior , Fumar Cigarrillos , Mutágenos/toxicidad , Mutágenos/análisis , Pruebas de Mutagenicidad , Salmonella typhimurium/genética
10.
Mikrochim Acta ; 189(5): 181, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35394213

RESUMEN

A catalyst-free co-reaction luminol-H2O2-K2S2O8 chemiluminescence (CL) system was developed, with long-life and high-intensity emission, and CL emission lasting for 6 h. A possible mechanism of persistent and intense emission in this CL system was discussed in the context of CL spectra, cyclic voltammetry, electron spin resonance (ESR), and the effects of radical scavengers on luminol-H2O2-K2S2O8 system. H2O2 and K2S2O8 co-reactants can promote each other to continuously generate corresponding radicals (OH•, 1O2, O2•-, SO4•-) that trigger the CL emission of luminol. H2O2 can also be constantly produced by the reaction of K2S2O8 and H2O to further extend the persistence of this CL system. CL emission can be quenched via ascorbic acid (AA), which can be generated through hydrolysis reaction of L-ascorbic acid 2-phosphate trisodium salt (AAP) and alkaline phosphatase (ALP). Next, a CL-based method was established for the detection of ALP with good linearity from 0.08 to 5 U·L-1 and a limit of detection of 0.049 U·L-1. The proposed method was used to detect ALP in human serum samples.


Asunto(s)
Fosfatasa Alcalina/análisis , Luminiscencia , Luminol , Humanos , Peróxido de Hidrógeno , Límite de Detección , Mediciones Luminiscentes/métodos
11.
Angew Chem Int Ed Engl ; 61(11): e202115561, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-34989066

RESUMEN

Sensitive sensing is critical when developing new calculation systems with weak input signals (ISs). In this work, a "weak-inputs-strong-outputs" strategy was proposed to guide the construction of sensitive logic nanodevices by coupling an input-induced reversible DNA computing platform with a hybridization chain reaction-based signal amplifier. By rational design of the sequence of computing elements (CEs) so as to avoid cross-talking between ISs and signal amplifier, the newly formed logic nanodevices have good sensitivity to the weak ISs even at low concentrations of CEs, and are able to perform YES, OR, NAND, NOR, INHIBIT, INHIBIT-OR and number classifier operation, showing that the DNA calculation proceeds in dilute solution medium that greatly improves the calculation proficiency of logic nanodevices without the confinement of the lithography process in nanotechnology.

12.
Anal Chem ; 93(7): 3411-3417, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33565859

RESUMEN

In this work, we propose a three-layer hierarchical hybridization chain reaction (3L hHCR) composed of 1stHCR, 2ndHCR, and 3rdHCR to achieve robust signal amplification efficiency and broaden the applied range of HCR-based systems. In principle, the execution of superior HCR generates the formation of the initiator (named as 2ndI or 3rdI) of the subordinate HCR that relies on the introduction of the target sequence (1stI). To avoid the high background signal of the 3L hHCR system, a strategy of "splitting reconstruction" was adopted. The initiator of the subordinate HCR was designed as two separate fragments (splitting) that are obtained together (reconstruction) for the motivation of the subordinate HCR after the completion of the superior HCR. The implementation of the entire 3L hHCR system generates significant fluorescence recovery that derives from the impediment of Förster resonance energy transfer between fluorophore and quencher; thus, ultrasensitive detection of 1stI in the range of 50 pM to 10 nM can be achieved. Surprisingly, when the concentration of 1stI is lower than 1 nM, the 3L hHCR shows excellent ability to discriminate against various concentrations of 1stI, which is better than that of the 2L hHCR I system. Due to the hierarchical self-assembly mechanism, the 3L hHCR can also be reliably operated as a cascade AND logic gate with a high specificity and molecular keypad lock with a prompt error-reporting function. Furthermore, the 3L hHCR-based molecular keypad lock also shows potential application in the accurate diagnosis of cancer. The 3 L hHCR shows visionary prospects in biosensing and the fabrication of advanced biocomputing networks.

13.
Anal Chem ; 93(7): 3526-3534, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33562958

RESUMEN

Precise drug delivery holds great promise in cancer treatment but still faces challenges in controllable drug release in tumor cells specifically. Herein, a nucleolin-targeted and telomerase-responsive DNA nanotube for drug release was developed. First, a DNA nanosheet with four capture strands on its surface was prepared, which could bind and load ricin A chain (RTA). The RTA-loaded nanosheet was further converted into a DNA nanotube with a high Förster resonance energy transfer (FRET) efficiency in the presence of a Cy3-modified DNA fastener by hybridizing with the Cy5-modified DNA and another DNA-containing telomerase primer sequence along the long sides. Moreover, the aptamer of nucleolin was assembled on the DNA nanotube by combining with the hybrid chain at the terminal. The aptamer-functionalized and RTA-loaded DNA nanotube displayed enhanced tumor permeability and precise drug release in response to the telomerase in tumor cells, following the change of the FRET signal and RTA-induced cell death. Moreover, the DNA nanotube was applied successfully in vivo, and there was an obvious inhibition of tumor growth on xenograft-bearing mice following systemic administration, indicating that the constructed DNA nanotube represents a promising platform for precise RTA delivery in target cancer therapy.


Asunto(s)
Nanotubos , Neoplasias , Telomerasa , Animales , ADN , Transferencia Resonante de Energía de Fluorescencia , Ratones , Neoplasias/tratamiento farmacológico , Fosfoproteínas , Proteínas de Unión al ARN , Telomerasa/genética , Telomerasa/metabolismo , Nucleolina
14.
Indoor Air ; 31(5): 1353-1363, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33818839

RESUMEN

Traditionally, direct-reading instruments have been used to directly determine the concentrations of indoor air pollutants that may exceed the regulation limits. However, these instruments cannot directly assess the potential health hazards of these pollutants to humans. In this study, we developed and improved a bacterial reverse mutation assay (Ames test) by using a direct gas exposure module to directly determine the mutagenicity of indoor air quality using five tester bacterial strains (TA98, TA100, TA102, TA1535, and TA1537). Thereafter, the module was used to evaluate the effects of exposure time, different concentrations of HCHO or toluene, and mutagenic activities. We found that TA100 was the most sensitive strain and was reverted by relatively lower concentrations of 0.035 ppm HCHO. Furthermore, 50 ppm of toluene exposures caused a significant increase in the number of revertant colonies of TA100 without S9 activation at the 1.5-8-h exposure time intervals. Our findings provide new evidence that gaseous HCHO exposure could display weak but direct, time-dependent, and dose-dependent mutagenic activities. The weak, direct-acting, indirect-acting, and time-dependent mutagen of 50 ppm toluene was also confirmed. Moreover, our improved Ames module and the exposure conditions provided in this study can be further applied to evaluate the mutagenicity of indoor air quality.


Asunto(s)
Contaminación del Aire Interior , Mutágenos/análisis , Tolueno/análisis , Contaminantes Atmosféricos , Escherichia coli , Formaldehído , Gases , Humanos , Pruebas de Mutagenicidad
15.
Anal Chem ; 92(17): 11565-11572, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32786463

RESUMEN

Fluorescent labeled single-stranded DNA (ssDNA) molecules physisorbed on graphene oxide (GO) have been extensively explored as a useful sensing platform. However, this approach faces challenges when applied to complex biological samples due to heavy nonspecific desorption of nontarget molecules from GO. To overcome this problem, we introduced a capture DNA (cDNA) fragment with a poly adenine (poly-A) extension into the physisorption system that greatly reduces nonspecific desorption and false positive signal due to strong binding between poly-A and GO. Fluorescence from the dye can be effectively quenched by BHQ, which thus provides a second guarantee of anti-interference to avoid possible nonspecific poly-A DNA displacement. As a proof of concept, we have successfully developed a novel DNA-adsorbing GO nanocomplex probe (DNA-GO nanocomplex probe). This probe has a high anti-interference capability and low background due to the presence of both GO and black hole quencher (BHQ) as a dual-quencher that reduces the background in live cell imaging due to resonance energy transfer (RET). We then employed the DNA-GO nanocomplex probe for simultaneous detection of miR-630 and miR-21 and also for simultaneous in situ dynamic monitoring of intracellular miR-630 and miR-21 in apoptotic cells. We discovered that miR-630 expression was up-regulated during the first 120 min. This simple but powerful protocol has great potential in precise detection and imaging of various substances in complex biological samples with improved accuracy.


Asunto(s)
Sondas de ADN/química , ADN de Cadena Simple/química , Grafito/química , MicroARNs/análisis , Nanoestructuras/química , Adsorción , Apoptosis , Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Humanos , Imagen Óptica , Propiedades de Superficie
16.
Waste Manag Res ; 38(2): 122-133, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31793381

RESUMEN

Agglomeration that occurs during municipal sewage sludge (MSS) fluidized bed co-combustion might affect heavy metal distribution and the transformation of bottom ash. A study on the mobility and speciation of heavy metals that accompanies agglomeration behavior and phosphorus addition should be examined during MSS co-combustion. Meanwhile, the aim of this study was to evaluate the total content and speciation of heavy metals during the MSS fluidized bed co-combustion by the chemical sequential extraction procedure (SEP). The risk assessment code (RAC) and individual contamination factor (ICF) are calculated to evaluate the mobility of heavy metals and their environmental risks in agglomerates. Moreover, identification of agglomerates is established by both characterization (scanning electron microscopy/energy-dispersive spectroscopy, X-ray photoelectron spectroscopy) and thermodynamic simulation (HSC chemistry software). The experimental results indicated that P and Na would form the lower melting-point compounds such as NaPO3 and Na2O in the bottom ash, which promoted agglomeration during MSS fluidized bed co-combustion. According to the simulation, Na and P have a stronger affinity than Si and Cr, and this reaction is not only influenced by particle agglomeration, but also by heavy metal distribution during modified MSS co-combustion. Nevertheless, the results of ICFs and RACs obtained from the SEP indicated that for heavy metals trapped in agglomerates, a weaker binding such as physical covering by eutectics might be considered as the dominant reaction compared with chemical binding to form a metal complex.


Asunto(s)
Ceniza del Carbón , Metales Pesados , Incineración , Fósforo , Aguas del Alcantarillado
17.
Angew Chem Int Ed Engl ; 59(8): 3300-3306, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-31825124

RESUMEN

Synthesizing 2D metal-organic frameworks (2D MOFs) in high yields and rational tailoring of the properties in a predictable manner for specific applications is extremely challenging. Now, a series of porphyrin-based 2D lanthanide MOFs (Ln-TCPP, Ln=Ce, Sm, Eu, Tb, Yb, TCPP=tetrakis(4-carboxyphenyl) porphyrin) with different thickness were successfully prepared in a household microwave oven. The as-prepared 2D Ln-TCPP nanosheets showed thickness-dependent photocatalytic performances towards photooxidation of 1,5-dihydroxynaphthalene (1,5-DHN) to synthesize juglone. Particularly, the Yb-TCPP displayed outstanding photodynamic activity to generate O2 - and 1 O2 . This work not only provides fundamental insights into structure designing and property tailoring of 2D MOFs nanosheets, but also pave a new way to improve the photocatalytic performance.

18.
Anal Chem ; 91(17): 11185-11191, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31412694

RESUMEN

Traditional fingerprints are usually obtained by pressing an inked finger on a paper. The inks would contaminate fingers and more importantly, these fingerprints are visible and able to be photocopied. In order to develop a smart membrane for fingerprint recording and document security, microrod assemblies of carbon quantum dots (CQDs)-Eu (III) are embedded in a electrospun nanofibrous (NFs) membrane which has strong red emission under UV irradiation owing to aggregation induced Dexter energy transfer from CQDs to Eu (III) ions. A clear blue emission fingerprint could be recorded on the membrane after a finger touch because the phosphate (Pi) secreted through sweat glands blocks the solid-state Dexter energy transfer, recovering the UV-irradiated blue emissions of CQDs. The Pi-based fingerprint on the membrane, which is invisible under daylight and could not be photocopied, greatly improves the security of the fingerprint and, furthermore, has the capability to identify the people who touched the secret document through the fingerprint analysis, showing that the intelligent NFs membrane can be applied for both fingerprint security and document counterspy.


Asunto(s)
Carbono/química , Europio/química , Tinta , Nanofibras/química , Papel , Puntos Cuánticos/química , Transferencia de Energía
19.
Mikrochim Acta ; 186(3): 168, 2019 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-30739202

RESUMEN

A bimetallic organic gel was prepared by mixing the bridging ligand 2,4,6-tri(4-carboxyphenyl)-1,3,5-triazine with Cu(II) and Co(II) ions at room temperature. The resulting metal-organic gel (MOG) shows enhanced peroxidase-like activity, most likely due to the synergetic redox cycling between Co(III)/Co(II) and Cu(II)/Cu(I) pairs. These accelerate interfacial electron transfer and generation of hydroxy radicals. The MOG can catalyze the reaction of H2O2 with terephthalic acid (TPA), producing a blue fluorescence product with the maximum excitation/emission at 315/446 nm. The enzyme mimic was used to design a fluorometric method for H2O2 that has a 81 nM detection limit. H2O2 is also formed by glucose oxidase-assisted oxidation of glucose by oxygen, and an assay for glucose was worked out based on the above method. It has a 0.33 µM detection limit. This study may open up a new avenue to design and synthesize nanomaterial-based biomimetic catalysts with multiple metal synergistically enhanced catalytic activity for potential applications in biocatalysis, bioassays and nano-biomedicine. Graphical abstracts Schematic presentation of the synergic catalytic effect of Cu(II)/Co(II) bimetallic organic gel promoted by the redox cycle between Co(III)/Co(II) and Cu(II)/Cu(I) pairs. The bimetallic organic gel can catalyze the reaction of H2O2 with terephthalic acid, thereby producing a blue-fluorescent product.

20.
Analyst ; 143(23): 5764-5770, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30334036

RESUMEN

Ricin is an extremely potent ribosome-inactivating protein and serves as a likely food biocontaminant or biological weapon. Thus, simple, sensitive and accurate analytical assays capable of detecting ricin are urgently needed to be established. Herein, we present a novel method for ricin B-chain (RTB) detection by using two materials: (a) a highly efficient hybrid probe that was formed by linking a glucose oxidase (GOD)-encapsulated liposome (GOD-L) to magnetic beads (MBs) through hybridization between an aptamer and a blocker and (b) a new low-background g-C3N4-MnO2 sandwich nanocomposite that exhibits fluorescence resonance energy transfer (FRET) between the g-C3N4 nanosheet and MnO2. In the presence of RTB, the strong binding between RTB and the aptamer can release the blocker-linked liposome from the surface of the MBs. After magnetic separation, the decomposed liposome can release GOD to catalyze the oxidation of glucose, generating a certain amount of H2O2. Then, H2O2 can reduce MnO2 of the g-C3N4-MnO2 nanocomposite to Mn2+, which leads to the elimination of FRET. Thus, the fluorescence of the g-C3N4 nanosheet will be turned on. Because of the excellent signal amplification ability of liposome and the characteristic highly sensitive response of the g-C3N4-MnO2 nanocomposite toward H2O2, RTB could be detected sensitively based on the significantly enhanced fluorescent intensity. The linear range of detection was from 0.25 µg mL-1 to 50 µg mL-1 and the limit of detection (LOD) was 190 ng mL-1. Moreover, the proposed assay was successfully applied in the detection of the entire ricin toxin content in a castor seed.


Asunto(s)
Compuestos de Manganeso/química , Nanocompuestos/química , Óxidos/química , Ricina/análisis , Aptámeros de Nucleótidos/química , Ricinus communis/química , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia/métodos , Contaminación de Alimentos/análisis , Glucosa Oxidasa/química , Peróxido de Hidrógeno/química , Límite de Detección , Liposomas , Oligodesoxirribonucleótidos/química , Semillas/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda