RESUMEN
Singlet oxygen (1O2) has a very short half-life of 10-5 s; however, it is a strong oxidant that causes growth arrest and necrotic lesions on plants. Its signaling pathway remains largely unknown. The Arabidopsis flu (fluorescent) mutant accumulates a high level of 1O2 and shows drastic changes in nuclear gene expression. Only two plastid proteins, EX1 (executer 1) and EX2 (executer 2), have been identified in the singlet oxygen signaling. Here, we found that the transcription factor abscisic acid insensitive 4 (ABI4) binds the promoters of genes responsive to 1O2-signals. Inactivation of the ABI4 protein in the flu/abi4 double mutant was sufficient to compromise the changes of almost all 1O2-responsive-genes and rescued the lethal phenotype of flu grown under light/dark cycles, similar to the flu/ex1/ex2 triple mutant. In addition to cell death, we reported for the first time that 1O2 also induces cell wall thickening and stomatal development defect. Contrastingly, no apparent growth arrest was observed for the flu mutant under normal light/dim light cycles, but the cell wall thickening (doubled) and stomatal density reduction (by two-thirds) still occurred. These results offer a new idea for breeding stress tolerant plants.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Oxígeno Singlete/metabolismo , Transcriptoma , Estomas de Plantas/metabolismoRESUMEN
Nitrogen (N), phosphorus (P), and potassium (K) are three essential macro-elements for plant growth and development. Used to improve yield in agricultural production, the excessive use of chemical fertilizers often leads to increased production costs and ecological environmental pollution. Vitamins C and E are antioxidants that play an important role in alleviating abiotic stress. However, there are few studies on alleviating oxidative stress caused by macro-element deficiency. Here, we used Arabidopsis vitamin E synthesis-deficient mutant vte4 and vitamin C synthesis-deficient mutant vtc1 on which exogenous vitamin E and vitamin C, respectively, were applied at the bolting stage. In the deficiency of macro-elements, the Arabidopsis chlorophyll content decreased, malondialdehyde (MDA) content and relative electric conductivity increased, and reactive oxygen species (ROS) accumulated. The mutants vtc1 and vte4 are more severely stressed than the wild-type plants. Adding exogenous vitamin E was found to better alleviate stress than adding vitamin C. Vitamin C barely affected and vitamin E significantly inhibited the synthesis of ethylene (ETH) and jasmonic acid (JA) genes, thereby reducing the accumulation of ETH and JA that alleviated the senescence caused by macro-element deficiency at the later stage of bolting in Arabidopsis. A deficiency of macro-elements also reduced the yield and germination rate of the seeds, which were more apparent in vtc1 and vte4, and adding exogenous vitamin C and vitamin E, respectively, could restore them. This study reported, for the first time, that vitamin E is better than vitamin C in delaying seedling senescence caused by macro-element deficiency in Arabidopsis.
Asunto(s)
Antioxidantes/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Ácido Ascórbico/farmacología , Resistencia a la Enfermedad/efectos de los fármacos , Plantones/efectos de los fármacos , Vitamina E/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Ciclopentanos/antagonistas & inhibidores , Ciclopentanos/metabolismo , Etilenos/antagonistas & inhibidores , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Oxilipinas/antagonistas & inhibidores , Oxilipinas/metabolismo , Enfermedades de las Plantas/prevención & control , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantones/genética , Plantones/metabolismo , Semillas/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de TiempoRESUMEN
Nitric oxide (NO) has a general inhibitory effects on chlorophyll biosynthesis, especially to the step of 5-aminolevulinic acid (ALA) biosynthesis and protochlorophyllide (Pchlide) to chlorophyllide (Chlide) conversion (responsible by the NADPH:Pchlide oxidoreductase POR). Previous study suggested that barley large POR aggregates may be generated by dithiol oxidation of cysteines of two POR monomers, which can be disconnected by some reducing agents. POR aggregate assembly may be correlated with seedling greening in barley, but not in Arabidopsis. Thus, NO may affect POR activity and seedling greening differently between Arabidopsis and barley. We proved this assumption by non-denaturing gel-analysis and reactive oxygen species (ROS) monitoring during the greening. NO treatments cause S-nitrosylation to POR cysteine residues and disassembly of POR aggregates. This modification reduces POR activity and induces Pchlide accumulation and singlet oxygen generation upon dark-to-high-light shift (and therefore inducing photobleaching lesions) in barley leaf apex, but not in Arabidopsis seedlings. ROS staining and ROS-related-gene expression detection confirmed that superoxide anion and singlet oxygen accumulated in barley etiolated seedlings after the NO treatments, when exposed to a fluctuating light. The data suggest that POR aggregate assembly may be correlated with barley chlorophyll biosynthesis and redox homeostasis during greening. Cysteine S-nitrosylation may be one of the key reasons for the NO-induced inhibition to chlorophyll biosynthetic enzymes.
Asunto(s)
Arabidopsis/metabolismo , Clorofilidas/biosíntesis , Hordeum/metabolismo , Óxido Nítrico/metabolismo , Oxígeno Singlete/metabolismoRESUMEN
The complete nucleotide sequence of the mitogenome of Bombyx mandarina strain Qingzhou was determined. The circular genome is 15,717 bp long and has the typical gene organization and order of lepidopteran mitogenomes. All protein-coding sequences are initiated with a typical ATN codon, except the COI gene, which has a 4-bp TTAG putative initiator codon. Eleven of the 13 protein-coding gene have a complete termination codon (all TAA), but the remaining two genes terminate with incomplete codons. All transfer RNAs (tRNAs) have a clover-leaf structure typical of the mitochondrial tRNAs, and some of them have a mismatch in the four-stem-and-loop structure. The length of the A + T rich region of B. mandarina strain Qingzhou is 495 bp, shorter than that of B. mandarina strain Tsukuba (747 bp) but similar to that of Bombyx mori. Phylogenetic analysis based on the whole mitochondrial genome sequences of the available sequenced species (B. mori strains C-108, Aojuku, Backokjam, and Xiafang, B. mandarina strains Tsukuba, Ankang, and Qingzhou, and Antheraea pernyi) shows the origin of the domesticated silkmoth B. mori to be the Chinese B. mandarina. Nuclear mitochondrial pseudogene sequences were detected in the nuclear genome of B. mori with the MEGA BLAST search program. A phylogenetic analysis of these nuclear mitochondrial pseudogene sequences suggests that B. mori was domesticated independently in different areas and periods.
Asunto(s)
Bombyx/genética , Genoma Mitocondrial/genética , Filogenia , Secuencia Rica en At/genética , Animales , Secuencia de Bases , Núcleo Celular/genética , ADN Mitocondrial/genética , Evolución Molecular , Genes de Insecto/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Seudogenes/genética , ARN Ribosómico/genética , ARN de Transferencia/genética , Seda/biosíntesis , Factores de TiempoRESUMEN
[Ir(COD)Cl]2/phosphoramidite ligand 1a was found to be an efficient catalytic system for the highly regio- and enantioselective decarboxylative alkylation of gamma-substituted allyl beta-ketocarboxylates, affording the branched products with up to >99/1 branched-linear ratio and 96% ee.