Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Idioma
Tipo del documento
Publication year range
1.
Zhonghua Wai Ke Za Zhi ; (12): 1417-1419, 2007.
Artículo en Zh | WPRIM | ID: wpr-338143

RESUMEN

<p><b>OBJECTIVE</b>To evaluate the efficacy of the digital cytopathological lung cancer diagnosing system (DCLCDS) utilizing the latest computer technologies (including reinforcement learning, image segmentation and classifier) and the cytopathological knowledge on lung cancer cells.</p><p><b>METHODS</b>Separate the overlapped lung cancer cells in a slice image applying the improved deBoor-Cox B-Spline algorithm; Segment cell regions in a slice image using an image segmentation algorithm based on reinforcement learning; Ensemble different classifiers, including Decision Tree classifier, Support Vector Machine (SVM) classifier and Bayesian classifier, to achieve an accurate result of cytopathological lung cancer diagnosis.</p><p><b>RESULTS</b>The accurate diagnosis rate for lung cancer identification of 224 images of small lung lesions aspiration biopsy from 120 cases randomly selected was 92.3%. The accurate diagnosis rate for type classification of lung cancer was 82.5%. The identification rate for abnormal nuclear cells was 71.6%.</p><p><b>CONCLUSIONS</b>The DCLCDS achieves a high accuracy on cytopathological lung cancer diagnosis by solving some major problems on the cytology smears, including cell overlapping, uneven coloration and impurity. It provides a relatively objective, standard tool on cytopathological lung cancer diagnosis. It has good efficacy on early diagnosis of lung cancer.</p>


Asunto(s)
Humanos , Algoritmos , Inteligencia Artificial , Citodiagnóstico , Métodos , Árboles de Decisión , Diagnóstico por Computador , Métodos , Procesamiento de Imagen Asistido por Computador , Neoplasias Pulmonares , Diagnóstico , Patología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Diseño de Software
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda