Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830127

RESUMEN

Electromagnetic energy is the backbone of wireless communication systems, and its progressive use has resulted in impacts on a wide range of biological systems. The consequences of electromagnetic energy absorption on plants are insufficiently addressed. In the agricultural area, electromagnetic-wave irradiation has been used to develop crop varieties, manage insect pests, monitor fertilizer efficiency, and preserve agricultural produce. According to different frequencies and wavelengths, electromagnetic waves are typically divided into eight spectral bands, including audio waves, radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. In this review, among these electromagnetic waves, effects of millimeter waves, ultraviolet, and gamma rays on plants are outlined, and their response mechanisms in plants through proteomic approaches are summarized. Furthermore, remarkable advancements of irradiating plants with electromagnetic waves, especially ultraviolet, are addressed, which shed light on future research in the electromagnetic field.


Asunto(s)
Radiación Electromagnética/clasificación , Plantas/metabolismo , Plantas/efectos de la radiación , Proteoma/metabolismo , Proteómica/métodos , Rayos gamma , Luz , Microondas , Ondas de Radio , Rayos Ultravioleta , Rayos X
2.
Int J Mol Sci ; 21(2)2020 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-31940953

RESUMEN

Improving soybean growth and tolerance under environmental stress is crucial for sustainable development. Millimeter waves are a radio-frequency band with a wavelength range of 1-10 mm that has dynamic effects on organisms. To investigate the potential effects of millimeter-waves irradiation on soybean seedlings, morphological and proteomic analyses were performed. Millimeter-waves irradiation improved the growth of roots/hypocotyl and the tolerance of soybean to flooding stress. Proteomic analysis indicated that the irradiated soybean seedlings recovered under oxidative stress during growth, whereas proteins related to glycolysis and ascorbate/glutathione metabolism were not affected. Immunoblot analysis confirmed the promotive effect of millimeter waves to glycolysis- and redox-related pathways under flooding conditions. Sugar metabolism was suppressed under flooding in unirradiated soybean seedlings, whereas it was activated in the irradiated ones, especially trehalose synthesis. These results suggest that millimeter-waves irradiation on soybean seeds promotes the recovery of soybean seedlings under oxidative stress, which positively regulates soybean growth through the regulation of glycolysis and redox related pathways.


Asunto(s)
Glycine max/crecimiento & desarrollo , Estrés Oxidativo/efectos de la radiación , Proteínas de Plantas/metabolismo , Proteómica/métodos , Cromatografía Liquida , Inundaciones , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Espectrometría de Masas , Nanotecnología , Proteínas de Plantas/efectos de la radiación , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/efectos de la radiación , Glycine max/metabolismo , Glycine max/efectos de la radiación , Estrés Fisiológico
3.
J Proteome Res ; 18(9): 3328-3341, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31356092

RESUMEN

Ultraviolet (UV)-B radiation acts as an elicitor to enhance the production of secondary metabolites in medicinal plants. To investigate the mechanisms, which lead to secondary metabolites in Catharanthus roseus under UVB radiation, a phosphoproteomic technique was used. ATP content increased in the leaves of C. roseus under UVB radiation. Phosphoproteins related to calcium such as calmodulin, calcium-dependent kinase, and heat shock proteins increased. Phosphoproteins related to protein synthesis/modification/degradation and signaling intensively changed. Metabolomic analysis indicated that the metabolites classified with pentoses, aromatic amino acids, and phenylpropanoids accumulated under UVB radiation. Phosphoproteomic and immunoblot analyses indicated that proteins related to glycolysis and the reactive-oxygen species scavenging system were changed under UVB radiation. These results suggest that UVB radiation activates the calcium-related pathway and reactive-oxygen species scavenging system in C. roseus. These changes lead to the upregulation of proteins, which are responsible for the redox reactions in secondary metabolism and are important for the accumulation of secondary metabolites in C. roseus under UVB radiation.


Asunto(s)
Catharanthus/metabolismo , Fosfoproteínas/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundario/efectos de la radiación , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Catharanthus/genética , Catharanthus/efectos de la radiación , Fosfoproteínas/efectos de la radiación , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/efectos de la radiación , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de la radiación , Plantas Medicinales/efectos de la radiación , Metabolismo Secundario/genética , Transducción de Señal/efectos de la radiación , Rayos Ultravioleta
4.
BMC Plant Biol ; 19(1): 198, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31088368

RESUMEN

BACKGROUND: Lonicera japonica Thunb. flower has been used for the treatment of various diseases for a long time and attracted many studies on its potential effects. Transcription factors (TFs) regulate extensive biological processes during plant development. As the restricted reports of L. japonica on TFs, our work was carried out to better understand the TFs' regulatory roles under different developmental stages in L. japonica. RESULTS: In this study, 1316 TFs belonging to 52 families were identified from the transcriptomic data, and corresponding expression profiles during the L. japonica flower development were comprehensively analyzed. 917 (69.68%) TFs were differentially expressed. TFs in bHLH, ERF, MYB, bZIP, and NAC families exhibited obviously altered expression during flower growth. Based on the analysis of differentially expressed TFs (DETFs), TFs in MYB, WRKY, NAC and LSD families that involved in phenylpropanoids biosynthesis, senescence processes and antioxidant activity were detected. The expression of MYB114 exhibited a positive correlation with the contents of luteoloside; Positive correlation was observed among the expression of MYC12, chalcone synthase (CHS) and flavonol synthase (FLS), while negative correlation was observed between the expression of MYB44 and the synthases; The expression of LSD1 was highly correlated with the expression of SOD and the total antioxidant capacity, while the expression of LOL1 and LOL2 exhibited a negative correlation with them; Many TFs in NAC and WRKY families may be potentially involved in the senescence process regulated by hormones and reactive oxygen species (ROS). The expression of NAC19, NAC29, and NAC53 exhibited a positive correlation with the contents of ABA and H2O2, while the expression of WRKY53, WRKY54, and WRKY70 exhibited a negative correlation with the contents of JA, SA and ABA. CONCLUSIONS: Our study provided a comprehensive characterization of the expression profiles of TFs during the developmental stages of L. japonica. In addition, we detected the key TFs that may play significant roles in controlling active components biosynthesis, antioxidant activity and flower senescence in L. japonica, thereby providing valuable insights into the molecular networks underlying L. japonica flower development.


Asunto(s)
Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Lonicera/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Ácido Clorogénico/metabolismo , Cromatografía Líquida de Alta Presión , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Glucósidos/metabolismo , Peróxido de Hidrógeno/metabolismo , Lonicera/genética , Lonicera/metabolismo , Luteolina/metabolismo , Proteínas de Plantas/genética , Análisis de Secuencia de ADN , Factores de Transcripción/genética
5.
Int J Mol Sci ; 20(2)2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30654535

RESUMEN

Morus alba is an important medicinal plant that is used to treat human diseases. The leaf, branch, and root of Morus can be applied as antidiabetic, antioxidant, and anti-inflammatory medicines, respectively. To explore the molecular mechanisms underlying the various pharmacological functions within different parts of Morus, organ-specific proteomics were performed. Protein profiles of the Morus leaf, branch, and root were determined using a gel-free/label-free proteomic technique. In the Morus leaf, branch, and root, a total of 492, 414, and 355 proteins were identified, respectively, including 84 common proteins. In leaf, the main function was related to protein degradation, photosynthesis, and redox ascorbate/glutathione metabolism. In branch, the main function was related to protein synthesis/degradation, stress, and redox ascorbate/glutathione metabolism. In root, the main function was related to protein synthesis/degradation, stress, and cell wall. Additionally, organ-specific metabolites and antioxidant activities were analyzed. These results revealed that flavonoids were highly accumulated in Morus root compared with the branch and leaf. Accordingly, two root-specific proteins named chalcone flavanone isomerase and flavonoid 3,5-hydroxylase were accumulated in the flavonoid pathway. Consistent with this finding, the content of the total flavonoids was higher in root compared to those detected in branch and leaf. These results suggest that the flavonoids in Morus root might be responsible for its biological activity and the root is the main part for flavonoid biosynthesis in Morus.


Asunto(s)
Morus/metabolismo , Especificidad de Órganos , Proteómica/métodos , Coloración y Etiquetado , Antioxidantes/metabolismo , Ciclo del Ácido Cítrico , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucólisis , Metaboloma , Morus/genética , Especificidad de Órganos/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Metabolismo Secundario
6.
Plant Cell Physiol ; 59(11): 2214-2227, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30020500

RESUMEN

Pharmaceutically active compounds from medical plants are attractive as a major source for new drug development. Prenylated stilbenoids with increased lipophilicity are valuable secondary metabolites which possess a wide range of biological activities. So far, many prenylated stilbenoids have been isolated from Morus alba but the enzyme responsible for the crucial prenyl modification remains unknown. In the present study, a stilbenoid-specific prenyltransferase (PT), termed Morus alba oxyresveratrol geranyltransferase (MaOGT), was identified and functionally characterized in vitro. MaOGT recognized oxyresveratrol and geranyl diphosphate (GPP) as natural substrates, and catalyzed oxyresveratrol prenylation. Our results indicated that MaOGT shared common features with other aromatic PTs, e.g. multiple transmembrane regions, conserved functional domains and targeting to plant plastids. This distinct PT represents the first stilbenoid-specific PT accepting GPP as a natural prenyl donor, and could help identify additional functionally varied PTs in moraceous plants. Furthermore, MaOGT might be applied for high-efficiency and large-scale prenylation of oxyresveratrol to produce bioactive compounds for potential therapeutic applications.


Asunto(s)
Dimetilaliltranstransferasa/metabolismo , Difosfatos/metabolismo , Diterpenos/metabolismo , Morus/enzimología , Estilbenos/metabolismo , Catálisis , Dimetilaliltranstransferasa/genética , Morus/genética , Morus/metabolismo , Organismos Modificados Genéticamente , Filogenia , Extractos Vegetales/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Prenilación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Especificidad por Sustrato , Nicotiana
7.
Int J Mol Sci ; 19(12)2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30563128

RESUMEN

Polyphenol oxidase (PPO) catalyzes the o-hydroxylation of monophenols and oxidation of o-diphenols to quinones. Although the effects of PPO on plant physiology were recently proposed, little has been done to explore the inherent molecular mechanisms. To explore the in vivo physiological functions of PPO, a model with decreased PPO expression and enzymatic activity was constructed on Clematis terniflora DC. using virus-induced gene silencing (VIGS) technology. Proteomics was performed to identify the differentially expressed proteins (DEPs) in the model (VC) and empty vector-carrying plants (VV) untreated or exposed to high levels of UV-B and dark (HUV-B+D). Following integration, it was concluded that the DEPs mainly functioned in photosynthesis, glycolysis, and redox in the PPO silence plants. Mapman analysis showed that the DEPs were mainly involved in light reaction and Calvin cycle in photosynthesis. Further analysis illustrated that the expression level of adenosine triphosphate (ATP) synthase, the content of chlorophyll, and the photosynthesis rate were increased in VC plants compared to VV plants pre- and post HUV-B+D. These results indicate that the silence of PPO elevated the plant photosynthesis by activating the glycolysis process, regulating Calvin cycle and providing ATP for energy metabolism. This study provides a prospective approach for increasing crop yield in agricultural production.


Asunto(s)
Catecol Oxidasa , Clematis , Silenciador del Gen , Fotosíntesis , Hojas de la Planta , Proteínas de Plantas , Proteómica , Catecol Oxidasa/genética , Catecol Oxidasa/metabolismo , Clematis/genética , Clematis/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
PLoS One ; 19(9): e0309978, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39302908

RESUMEN

Fritillariae thunbergii Bulbus (FTB) is a traditional Chinese medicine that has been widely cultivated for its expectorant, antitussive, antiasthmatic, antiviral, and anticancer properties. The yield and quality of F. thunbergii are influenced by cultivation conditions, such as the use of fertilizers. However, the optimal type of fertilizers for maximum quality and yield and underlying mechanisms are not clear. We collected F. thunbergii using raw chicken manure (RC), organic fertilizer (OF), and plant ash (PA) as the base fertilizer in Pan'an County, Jinhua City, Zhejiang Province as experimental materials. The combined results of HPLC-ELSD detection and yield statistics showed that the F. thunbergii with OF application was the best, with the content of peimine and peiminine reaching 0.0603% and 0.0502%, respectively. In addition, the yield was 2.70 kg/m2. Transcriptome analysis indicated that up-regulation of the ABA signaling pathway might promote bulb yield. Furthermore, putative key genes responsible for steroidal alkaloid accumulation were identified. These results provided guiding significance for the rational fertilization conditions of F. thunbergii as well as the basis for the exploration of functional genes related to the alkaloid biosynthesis pathway.


Asunto(s)
Fertilizantes , Fritillaria , Fritillaria/genética , Fritillaria/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Cevanas/farmacología , Transcriptoma , Alcaloides , Animales
9.
J Photochem Photobiol B ; 252: 112862, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38330691

RESUMEN

Catharanthus roseus produces a large array of terpenoid indole alkaloids (TIAs) that are important natural source for many drugs. Ultraviolet B (UVB) radiation have been proved to have regulatory effect towards biosynthesis of TIAs, which were meaningful for boost of TIA production. To decipher more comprehensive molecular characteristics in C. roseus under UVB radiation, integrated analysis of the nuclear proteome together with the transcriptome data under UVB radiation were performed. Expression of genes related to transmembrane transporters gradually increased during the prolonged exposure to UVB radiation. Some of known TIA transporters were affected by UVB. Abundance of proteins associated with spliceosome and nucleocytoplasmic transport increased. Homologs belonging to ORCA and CrWRKY transcription factors family increased at both transcriptomic and proteomic levels. At the same time, the numbers of differential alternative splicing events between UVB-radiated and white-light-treated plants continuously increased. These results suggest that the nucleus participated in early response of C. roseus under UVB radiation, where alternative splicing events occurred and might regulate multiple pathways. Furthermore, integrative omics analysis indicates that expression of enzymes at the terminal stages of seco-iridoid pathway decreased with the prolonged radiation exposure, potentially inhibiting further rise of TIA synthesis under extended UVB exposure.


Asunto(s)
Catharanthus , Transcriptoma , Catharanthus/genética , Catharanthus/metabolismo , Proteómica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
10.
Int J Biol Macromol ; 240: 124353, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059281

RESUMEN

Theaflavins (TFs) are important quality compounds in black tea with a variety of biological activities. However, direct extraction of TFs from black tea is inefficient and costly. Therefore, we cloned two PPO isozymes from Huangjinya tea, termed HjyPPO1 and HjyPPO3. Both isozymes oxidized corresponding catechin substrates for the formation of four TFs (TF1, TF2A, TF2B, TF3), and the optimal catechol-type catechin to pyrogallol-type catechin oxidation rate of both isozymes was 1:2. In particular, the oxidation efficiency of HjyPPO3 was higher than that of HjyPPO1. The optimum pH and temperature of HjyPPO1 were 6.0 and 35 °C, respectively, while those of HjyPPO3 were 5.5 and 30 °C, respectively. Molecular docking simulation indicated that the unique residue of HjyPPO3 at Phe260 was more positive and formed a π-π stacked structure with His108 to stabilize the active region. In addition, the active catalytic cavity of HjyPPO3 was more conducive for substrate binding by extensive hydrogen bonding.


Asunto(s)
Camellia sinensis , Catequina , Camellia sinensis/química , Catequina/química , Catecol Oxidasa/metabolismo , Isoenzimas , Simulación del Acoplamiento Molecular , Antioxidantes , Té/genética , Té/química , Clonación Molecular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda