Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Biol Trace Elem Res ; 118(2): 120-30, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17873354

RESUMEN

The effects of nano-anatase TiO2 on light absorption, distribution, and conversion, and photoreduction activities of spinach chloroplast were studied by spectroscopy. Several effects of nano-anatase TiO2 were observed: (1) the absorption peak intensity of the chloroplast was obviously increased in red and blue region, the ratio of the Soret band and Q band was higher than that of the control; (2) the great enhancement of fluorescence quantum yield near 680 nm of the chloroplast was observed, the quantum yield under excitation wavelength of 480 nm was higher than the excitation wavelength of 440 nm; (3) the excitation peak intensity near 440 and 480 nm of the chloroplast significantly rose under emission wavelength of 680 nm, and F 480 / F 440 ratio was reduced; (4) when emission wavelength was at 720 nm, the excitation peaks near 650 and 680 nm were obviously raised, and F 650 / F 680 ratio rose; (5) the rate of whole chain electron transport, photochemical activities of PSII DCPIP photoreduction and oxygen evolution were greatly improved, but the photoreduction activities of PSI were a little changed. Together, the studies of the experiments showed that nano-anatase TiO2 could increase absorption of light on spinach chloroplast and promote excitation energy to be absorbed by LHCII and transferred to PSII and improve excitation energy from PSI to be transferred to PSII, thus, promote the conversion from light energy to electron energy and accelerate electron transport, water photolysis, and oxygen evolution.


Asunto(s)
Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Luz , Oxidación-Reducción , Fármacos Fotosensibilizantes , Spinacia oleracea , Titanio , Cloroplastos/química , Transporte de Electrón/fisiología , Membranas Intracelulares/química , Oxígeno/metabolismo , Fotoquímica , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Espectrometría de Fluorescencia , Spinacia oleracea/citología , Spinacia oleracea/metabolismo , Titanio/química , Titanio/metabolismo
2.
Acta Pharmaceutica Sinica B ; (6): 794-808, 2019.
Artículo en Inglés | WPRIM | ID: wpr-774942

RESUMEN

Histone lysine specific demethylase 1 (LSD1) has been recognized as an important modulator in post-translational process in epigenetics. Dysregulation of LSD1 has been implicated in the development of various cancers. Herein, we report the discovery of the hit compound (IC = 3.93 μmol/L) and further medicinal chemistry efforts, leading to the generation of compound (IC = 49 nmol/L, and = 16 nmol/L), which inhibited LSD1 reversibly and competitively with H3K4me2, and was selective to LSD1 over MAO-A/B. Docking studies were performed to rationalize the potency of compound . Compound also showed strong antiproliferative activity against four leukemia cell lines (OCL-AML3, K562, THP-1 and U937) as well as the lymphoma cell line Raji with the IC values of 1.79, 1.30, 0.45, 1.22 and 1.40 μmol/L, respectively. In THP-1 cell line, significantly inhibited colony formation and caused remarkable morphological changes. Compound induced expression of CD86 and CD11b in THP-1 cells, confirming its cellular activity and ability of inducing differentiation. The findings further indicate that targeting LSD1 is a promising strategy for AML treatment, the triazole-fused pyrimidine derivatives are new scaffolds for the development of LSD1/KDM1A inhibitors.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda