Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542248

RESUMEN

Strigolactones (SLs) were recently defined as a novel class of plant hormones that act as key regulators of diverse developmental processes and environmental responses. Much research has focused on SL biosynthesis and signaling in roots and shoots, but little is known about whether SLs are produced in early developing seeds and about their roles in ovule development after fertilization. This study revealed that the fertilized ovules and early developing pericarp in Xanthoceras sorbifolium produced minute amounts of two strigolactones: 5-deoxystrigol and strigol. Their content decreased in the plants with the addition of exogenous phosphate (Pi) compared to those without the Pi treatment. The exogenous application of an SL analog (GR24) and a specific inhibitor of SL biosynthesis (TIS108) affected early seed development and fruit set. In the Xanthoceras genome, we identified 69 potential homologs of genes involved in SL biological synthesis and signaling. Using RNA-seq to characterize the expression of these genes in the fertilized ovules, 37 genes were found to express differently in the fertilized ovules that were aborting compared to the normally developing ovules. A transcriptome analysis also revealed that in normally developing ovules after fertilization, 12 potential invertase genes were actively expressed. Hexoses (glucose and fructose) accumulated at high concentrations in normally developing ovules during syncytial endosperm development. In contrast, a low ratio of hexose and sucrose levels was detected in aborting ovules with a high strigolactone content. XsD14 virus-induced gene silencing (VIGS) increased the hexose content in fertilized ovules and induced the proliferation of endosperm free nuclei, thereby promoting early seed development and fruit set. We propose that the crosstalk between sugar and strigolactone signals may be an important part of a system that accurately regulates the abortion of ovules after fertilization. This study is useful for understanding the mechanisms underlying ovule abortion, which will serve as a guide for genetic or chemical approaches to promote seed yield in Xanthoceras.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos , Lactonas , Óvulo Vegetal , Sapindaceae , Óvulo Vegetal/genética , Fertilización/genética , Semillas , Sapindaceae/genética , Hexosas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
J Virol ; 96(14): e0075922, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35867570

RESUMEN

Avian reovirus (ARV) causes viral arthritis, chronic respiratory diseases, retarded growth, and malabsorption syndrome. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally by silencing or degrading their targets, thus playing important roles in the host response to pathogenic infection. However, the role of miRNAs in host response to ARV infection is still not clear. In this study, we show that ARV infection markedly increased gga-miR-30c-5p expression in DF-1 cells and that transfection of cells with gga-miR-30c-5p inhibited ARV replication while knockdown of endogenous gga-miR-30c-5p enhanced viral growth in cells. Importantly, we identified the autophagy related 5 (ATG5), an important proautophagic protein, as a bona fide target of gga-miR-30c-5p. Transfection of DF-1 cells with gga-miR-30c-5p markedly reduced ATG5 expression accompanied with reduced conversion of ARV-induced-microtubule-associated protein 1 light chain 3 II (LC3-II) from LC3-I, an indicator of autophagy in host cell, while knockdown of endogenous gga-miR-30c-5p enhanced ATG5 expression as well as ARV-induced conversion of LC3-II, facilitating viral growth in cells. Furthermore, knockdown of ATG5 by RNA interference (RNAi) or treatment of cells with autophagy inhibitors (3-MA and wortmannin) markedly reduced ARV-induced LC3-II and syncytium formation, suppressing viral growth in cells, while overexpression of ATG5 increased ARV-induced LC3-II and syncytium formation, promoting viral growth in cells. Thus, gga-miR-30c-5p suppressed viral replication by inhibition of ARV-induced autophagy via targeting ATG5. These findings unraveled the mechanism of how host cells combat against ARV infection by self-encoded small RNA and furthered our understanding of the role of microRNAs in host response to pathogenic infection. IMPORTANCE Avian reovirus (ARV) is an important poultry pathogen causing viral arthritis, chronic respiratory diseases, and retarded growth, leading to considerable economic losses to the poultry industry across the globe. Elucidation of the pathogenesis of ARV infection is crucial to guiding the development of novel vaccines or drugs for the effective control of these diseases. Here, we investigated the role of miRNAs in host response to ARV infection. We found that infection of host cells by ARV remarkably upregulated gga-miR-30c-5p expression. Importantly, gga-miR-30c-5p suppressed ARV replication by inhibition of ARV-induced autophagy via targeting autophagy related 5 (ATG5) accompanied by suppression of virus-induced syncytium formation, thus serving as an important antivirus factor in host response against ARV infection. These findings will further our understanding of how host cells combat against ARV infection by self-encoded small RNAs and may be used as a potential target for intervening ARV infection.


Asunto(s)
Proteína 5 Relacionada con la Autofagia , MicroARNs , Orthoreovirus Aviar , Infecciones por Reoviridae , Animales , Autofagia , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Pollos/genética , MicroARNs/genética , Orthoreovirus Aviar/patogenicidad , Orthoreovirus Aviar/fisiología , Infecciones por Reoviridae/prevención & control , Replicación Viral
3.
J Virol ; 96(7): e0188821, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35319228

RESUMEN

Recognition of viral RNAs by melanoma differentiation associated gene-5 (MDA5) initiates chicken antiviral response by producing type I interferons. Our previous studies showed that chicken microRNA-155-5p (gga-miR-155-5p) enhanced IFN-ß expression and suppressed the replication of infectious burse disease virus (IBDV), a double-stranded RNA (dsRNA) virus causing infectious burse disease in chickens. However, the mechanism underlying IBDV-induced gga-miR-155-5p expression in host cells remains elusive. Here, we show that IBDV infection or poly(I:C) treatment of DF-1 cells markedly increased the expression of GATA-binding protein 3 (GATA3), a master regulator for TH2 cell differentiation, and that GATA3 promoted gga-miR-155-5p expression in IBDV-infected or poly(I:C)-treated cells by directly binding to its promoter. Surprisingly, ectopic expression of GATA3 significantly reduced IBDV replication in DF-1 cells, and this reduction could be completely abolished by treatment with gga-miR-155-5p inhibitors, whereas knockdown of GATA3 by RNA interference enhanced IBDV growth, and this enhancement could be blocked with gga-miR-155-5p mimics, indicating that GATA3 suppressed IBDV replication by gga-miR-155-5p. Furthermore, our data show that MDA5 is required for GATA3 expression in host cells with poly(I:C) treatment, so are the adaptor protein TBK1 and transcription factor IRF7, suggesting that induction of GATA3 expression in IBDV-infected cells relies on MDA5-TBK1-IRF7 signaling pathway. These results uncover a novel role for GATA3 as an antivirus transcription factor in innate immune response by promoting miR-155 expression, further our understandings of host response against pathogenic infection, and provide valuable clues to the development of antiviral reagents for public health. IMPORTANCE Gga-miR-155-5p acts as an important antivirus factor against IBDV infection, which causes a severe immunosuppressive disease in chicken. Elucidation of the mechanism regulating gga-miR-155-5p expression in IBDV-infected cells is essential to our understandings of the host response against pathogenic infection. This study shows that transcription factor GATA3 initiated gga-miR-155-5p expression in IBDV-infected cells by directly binding to its promoter, suppressing viral replication. Furthermore, induction of GATA3 expression was attributable to the recognition of dsRNA by MDA5, which initiates signal transduction via TBK1 and IRF7. Thus, it is clear that IBDV induces GATA3 expression via MDA5-TBK1-IRF7 signaling pathway, thereby suppressing IBDV replication by GATA3-mediated gga-miR-155-5p expression. This information remarkably expands our knowledge of the roles for GATA3 as an antivirus transcription factor in host innate immune response particularly at an RNA level and may prove valuable in the development of antiviral drugs for public health.


Asunto(s)
Infecciones por Birnaviridae , Factor de Transcripción GATA3 , Virus de la Enfermedad Infecciosa de la Bolsa , MicroARNs , Animales , Antivirales , Infecciones por Birnaviridae/tratamiento farmacológico , Infecciones por Birnaviridae/inmunología , Infecciones por Birnaviridae/virología , Línea Celular , Pollos , Factor de Transcripción GATA3/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Poli I-C/farmacología , Replicación Viral/fisiología
4.
Molecules ; 27(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35056789

RESUMEN

The development of graphene oxide-based heterogeneous materials with an economical and environmentally-friendly manner has the potential to facilitate many important organic transformations but proves to have few relevant reported reactions. Herein, we explore the synergistic role of catalytic systems driven by graphene oxide and visible light that form nucleophilic alkoxyl radical intermediates, which enable an anti-Markovnikov addition exclusively to the terminal alkenes, and then the produced benzyl radicals are subsequently added with N-methylquinoxalones. This photoinduced cascade radical difunctionalization of olefins offers a concise and applicable protocol for constructing alkoxyl-substituted N-methylquinoxalones.

5.
Compr Rev Food Sci Food Saf ; 21(2): 1940-1957, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182006

RESUMEN

Considering that a series of complex issues such as environmental problems, sustainable development, animal welfare, and human health are on a global scale, the development of vegetable protein-based meat substitutes provides a potential solution to the disparity between meat consumption demand and supply. The research and development of vegetable protein-based meat substitutes have become a major commercial activity, and the market is expanding to meet the growing consumer demand. Soy protein isolates (SPI) are often used as a raw material for vegetable meat substitutes because of their potential to form fiber structures. Although significant initial success has been achieved, it is still a challenge to explain how the composition and aggregation of SPI influence gel properties and the mechanism(s) involved. This article reviews the latest research about SPI. The relationship between the composition, aggregation, and gelation properties of SPI is based on a through literature search. It focused on the application of SPI in heat- and cold-induced gels, given the diversified market demands. The research on cold gel has helped expand the market. The methods to improve the properties of SPI gels, including physical, chemical, and biological properties, are reviewed to provide insights on its role in the properties of SPI gels. To achieve environmentally friendly and efficient ways for the food industry to use SPI gel properties, the research prospects and development trends of the gel properties of SPI are summarized. New developments and practical applications in the production technology, such as for ultrasound, microwave and high pressure, are reviewed. The potential and challenges for practical applications of cold plasma technology for SPI gel properties are also discussed. There is a need to transfer the laboratory technology to actual food production efficiently and safely.


Asunto(s)
Proteínas de Vegetales Comestibles , Proteínas de Soja , Fibras de la Dieta , Geles/química , Calor , Proteínas de Soja/química
7.
Int J Mol Sci ; 20(21)2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31683847

RESUMEN

MicroRNAs (miRNAs) are a class of non-coding small RNAs that play important roles in the regulation of various biological processes including cell development and differentiation, apoptosis, tumorigenesis, immunoregulation and viral infections. Avian immunosuppressive diseases refer to those avian diseases caused by pathogens that target and damage the immune organs or cells of the host, increasing susceptibility to other microbial infections and the risk of failure in subsequent vaccination against other diseases. As such, once a disease with an immunosuppressive feature occurs in flocks, it would be difficult for the stakeholders to have an optimal economic income. Infectious bursal disease (IBD), avian leukemia (AL), Marek's disease (MD), chicken infectious anemia (CIA), reticuloendotheliosis (RE) and avian reovirus infection are on the top list of commonly-seen avian diseases with a feature of immunosuppression, posing an unmeasurable threat to the poultry industry across the globe. Understanding the pathogenesis of avian immunosuppressive disease is the basis for disease prevention and control. miRNAs have been shown to be involved in host response to pathogenic infections in chickens, including regulation of immunity, tumorigenesis, cell proliferation and viral replication. Here we summarize current knowledge on the roles of miRNAs in avian response to viral infection and pathogenesis of avian immunosuppressive diseases, in particular, MD, AL, IBD and RE.


Asunto(s)
Enfermedades de las Aves/inmunología , Virus de la Enfermedad Infecciosa de la Bolsa/inmunología , MicroARNs/inmunología , Virosis/inmunología , Animales , Enfermedades de las Aves/genética , Enfermedades de las Aves/virología , Pollos , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Inmunidad/genética , Inmunidad/inmunología , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , Enfermedad de Marek/genética , Enfermedad de Marek/inmunología , Enfermedad de Marek/virología , MicroARNs/genética , Virosis/genética , Virosis/virología
8.
Lasers Surg Med ; 50(5): 433-439, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29756653

RESUMEN

OBJECTIVES: To compare levels of pathogens from peri-implant sulcus versus abutment screw cavities after photodynamic therapy. MATERIAL AND METHODS: Twenty patients were included. Photodynamic therapy (PDT) was applied both in sulcus and cavities after sampling following suprastructures loading, and repeated after 2 weeks. Two samples each containing four paper points were collected for each implant at baseline, 2 weeks, 3 months: (i) peri-implant sulcus and (ii) abutment screw cavities. Seventy-five percent ethanol was applied in another 20 patients as the control group in the same way. qPCR was used to quantify periodontal pathogens: Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus mutans. RESULTS: PDT showed a better bacterial reduction than ethanol. P. g. and F. n. were most frequently detected, while less for S. m. P. gingivalis' proportion from both sites was significantly higher than the other two bacteria (P < 0.05), except for 2 weeks' peri-implant sulcus sample. Bacteria counts from abutment screw cavities were always less than those from peri-implant sulcus and was significantly lower for total bacteria at 3 months (P < 0.05). Total bacterial from abutment screw cavities significantly reduced at 3 months compared to baseline (P < 0.05). CONCLUSIONS: PDT appears to be effective in bacterial reduction compared to ethanol and can reduce P. gingivalis with short time intervals, as well as decreasing total bacteria counts within abutment screw cavities in the long run, suggesting PDT an effective way sterilizing inner surface of oral implant suprastrutures. Lasers Surg. Med. 50:433-439, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Implantes Dentales , Cavidad Pulpar/microbiología , Fusobacterium nucleatum/aislamiento & purificación , Fotoquimioterapia , Porphyromonas gingivalis/aislamiento & purificación , Streptococcus mutans/aislamiento & purificación , Adulto , Anciano , Anciano de 80 o más Años , Carga Bacteriana , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
9.
J Food Sci Technol ; 53(5): 2342-51, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27407200

RESUMEN

Maillard reaction products (MRPs) of soybean protein isolate (SPI) and sugars (glucose and maltose) were prepared by heating in the aqueous dispersion at 95 °C for 15 min with ultrasonic pretreatment (ultrasonic power of 200 W) for 20 min. Effect of ultrasonic pretreatment on physicochemical characteristics and rheological properties of SPI/sugar MRPs was investigated. SPI/sugar MRPs prepared with ultrasonic pretreatment had higher degree of glycation (DG), lower browning and less compact tertiary conformation than that with non-ultrasonic pretreatment. Surface hydrophobicity (H0), particle size and rheological properties were measured by fluorescence spectrophotometry, laser particle size analysis and dynamic oscillatory rheometry, respectively. Glycation reduced H0 and particle size as well as weaken the gel network formed by the acidification of GDL. However, ultrasound increased H0 and decreased particle size. This is desirable for the formation of acid-induced gel structure. The ultrasonic pretreatments reduced/eliminate the weakening effect of glycation on the gel network of SPI/sugar MRPs, and even improved the gel properties.

10.
Int J Equity Health ; 14: 5, 2015 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-25595196

RESUMEN

BACKGROUND: Many Chinese elderly increasingly face the serious problem of the "empty nest" phenomenon. The elderly living independently, also called empty-nest elderly, refers to elderly people living alone whose children left home. However few studies concerned about the subjective well-being (SWB) of the elderly living independently. METHODS: This study employs The Memorial University of Newfoundland Scale of Happiness (MUNSH) to explore the SWB of the elderly living independently in rural areas of Wenzhou, a relatively developed region in China. 536 sampled are randomly selected. RESULTS: The results indicate that participants obtained low scores in positive affect, positive experience, and the total SWB score, but high scores in negative affect and negative experience. Age, low education, poor health condition and little income were found to be negatively correlated with SWB. The SWB score of the elderly living with a spouse is higher than those who divorced or lost their spouse and the score of women is lower than that of men. In addition, the survey revealed that children's support has a positive influence on the SWB of the rural elderly living independently. CONCLUSIONS: The elderly living independently in rural Wenzhou, China have unfavorable SWB. Poor socio-economic statuses are negative impact factors. But the children's support can help to improve. Special attention is needed to those with lower socio-economic status and less children's support.


Asunto(s)
Autoevaluación Diagnóstica , Vida Independiente/economía , Población Rural , Factores Socioeconómicos , Anciano , Anciano de 80 o más Años , China/epidemiología , Femenino , Humanos , Masculino , Encuestas y Cuestionarios
11.
Food Chem X ; 21: 101122, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38261844

RESUMEN

Protein-polysaccharide composite is of great significance for the development of soluble protein recovery process. This study investigated the effects of cavitation jet (CJ) pretreatment at different time (0, 60, 120, 180, 240, 300 s) intervals on the recovery of soy whey protein (SWP) from soy whey wastewater using chitosan (CH). In addition, the structure and properties of the SWP/CH complexes were examined. The results showed that the recovery yield of SWP reached 84.44 % when the CJ pretreatment time was 180 s, and the EAI and ESI values of the SWP/CH complex increased from 32.39 m2/g and 21 min to 48.47 m2/g and 32 min, respectively. In the CJ pretreatment process, SWP promotes the recombination with chitosan through electrostatic interaction and hydrogen bond, while hydrophobic interaction is also involved. This study has guiding significance for CJ technology in the recovery and utilization of protein in industrial wastewater.

12.
Foods ; 13(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38338596

RESUMEN

To enable a wider utilization of co-products from beer processing and minimize the negative effect of added grain on bread quality, flavor, and other attributes, brewer's spent grains (BSG) are processed through microwave pretreatment, and then the microwave-treated BSG (MW-BSG) is added to bread. So far, there has been no investigation on the effect of microwave-pretreated BSG on bread quality and flavor. In this study, we examined the effects of diverse microwave treatment variables on the physicochemical structure of BSG and explored the consequences of MW-BSG on the quality and flavor of bread. The results showed that soluble dietary fiber and water-soluble protein levels in MW-BSG increased significantly (144.88% and 23.35%) at a 540 W microwave power, 3 min processing time, and 1:5 material-liquid ratio of BSG to water. The proper addition of MW-BSG positively affected the bread texture properties and color, but excessive amounts led to an irregular size and distribution of the bread crumbs. The result of electronic nose and HS-SPME-GC-MS analyses showed that the addition of MW-BSG modified the odor profile of the bread. A sensory evaluation showed mean scores ranging from 6.81 to 4.41 for bread containing 0-10% MW-BSG. Consumers found a maximum level of 6% MW-BSG acceptable. This study endeavors to decrease environmental contamination caused by brewing waste by broadening the methods by which beer co-products can be utilized through an innovative approach.

13.
Front Microbiol ; 15: 1371849, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486701

RESUMEN

Bovine herpes virus 1 (BoHV-1) causes a wide variety of diseases in wild and domestic cattle. The most widely used method for viral identification is real-time PCR, which can only be performed in laboratories using sophisticated instruments by expert personnel. Herein, we developed an ultrasensitive time-resolved fluorescence lateral flow immunochromatographic strip (ICS) assay for detecting BoHV-1 in bovine samples using a monoclonal antibody against BoHV-1 labelled with fluorescent microspheres, which can be applied in any setting. The intact process from sample collection to final result can be achieved in 15 min. The limit of detection of the assay for BoHV-1 was 102 TCID50/100 µL. The coincidence rate of the ICS method and real-time PCR recommended by the World Organization for Animal Health (WOAH) was 100% for negative, 92.30% for positive, and 95.42% for total, as evaluated by the detection of 131 clinical samples. This detection method was specifically targeted to BoHV-1, not exhibiting cross-reactivity with other bovine pathogens including BoHV-5. We developed an ICS assay equipped with a portable instrument that offers a sensitive and specific platform for the rapid and reliable detection of BoHV-1 in the field. The Point-of-Care test of BoHV-1 is suitable for the screening and surveillance of BoHV-1 in dairy herds.

14.
Food Chem X ; 21: 101066, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38268843

RESUMEN

At present, there have been many research articles reporting that plant-based protein Pickering particles from different sources are used to stabilize Pickering emulsions, but the reports of corresponding review articles are still far from sufficient. This study focuses on the research hotspots and related progress on plant-based protein Pickering particles in the past five years. First, the article describes the mechanism by which Pickering emulsions are stabilized by different types of plant-based protein Pickering particles. Then, the extraction, preparation, and modification methods of various plant-based protein Pickering particles are highlighted to provide a reference for the development of greener and more efficient plant-based protein Pickering particles. The article also introduces some of the most promising applications of Pickering emulsions stabilized by plant-based protein Pickering particles in the food field. Finally, the paper also discusses the potential applications and challenges of plant-based protein Pickering particles in the food industry.

15.
Food Funct ; 15(10): 5329-5342, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38625681

RESUMEN

Antibiotic-associated diarrhea (AAD) is a common side effect during antibiotic treatment, and this has warranted research into alternative protocols. In this study, we investigated the potential therapeutic effects of three cohorts, Lactobacillus plantarum KLDS 1.0386, Lactobacillus acidophilus KLDS 1.0901 and a mixed strain of both, on intestinal inflammation, the intestinal mucosal barrier, and microbial community in mice with ampicillin-induced diarrhea. The results showed that Lactobacillus inhibited the activation of the TLR4/NF-κB signaling pathway, decreased the expression of pro-inflammatory cytokines, increased the expression of anti-inflammatory cytokines in the murine intestine, and alleviated the intestinal barrier damage and inflammation induced by ampicillin. In addition, Lactobacillus ameliorates intestinal epithelial barrier damage by increasing the expression of tight junction proteins and aquaporins. After Lactobacillus treatment, the diversity of gut microbiota increased significantly, and the composition and function of gut microbiota gradually recovered. In the gut microbiota, Bacteroidetes and Escherichia Shigella related to the synthesis of short-chain fatty acids (SCFAs) were significantly affected by ampicillin, while Lactobacillus regulates the cascade of the microbial-SCFA signaling pathway, which greatly promoted the generation of SCFAs. Collectively, Lactobacillus showed better results in treating AAD, especially in mixed strains.


Asunto(s)
Antibacterianos , Diarrea , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Animales , Ratones , Ácidos Grasos Volátiles/metabolismo , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Diarrea/microbiología , Antibacterianos/farmacología , Antibacterianos/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Lactobacillus , Leche , Ampicilina/farmacología , Masculino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Probióticos/farmacología , Lactobacillus plantarum , Lactobacillus acidophilus , Ratones Endogámicos C57BL
16.
Int J Biol Macromol ; 269(Pt 1): 131770, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688793

RESUMEN

Poor storage stability limits the application of liquid diabetes formula food for special medical purposes (L-D-FSMP) in maintaining blood sugar stability in diabetic patients. This work aims to improve the stability of L-D-FSMP by adjusting the ratio of xanthan gum (XG) and carrageenan (CG) in casein (CA)-XG-CG ternary complex. The centrifugal sedimentation rate results showed that the compound ratio of XG and CG had a greater impact on L-D-FSMP storage stability. Transmission electron microscopy (TEM) results showed that the combination of CA, XG and CG occurred. Fourier transform infrared spectroscopy (FTIR) results showed that CA, XG and CG were mainly combined through hydrogen bonds and ionic bonds to form a CA-XG-CG ternary complex. When the ratio of XG and CG was 1:1, the number of disulfide bonds was the largest. The results of three-phase contact angle and emulsifying ability confirmed that when the ratio of XG and CG was 1:1, CA-XG-CG had the strongest emulsifying ability. The particle size distribution and zeta-potential results showed that when the ratio of XG and CG was 1:1, L-D-FSMP had the narrowest particle size distribution range and the strongest stability. These results may provide valuable information for the production of stable L-D-FSMP.


Asunto(s)
Carragenina , Caseínas , Polisacáridos Bacterianos , Caseínas/química , Polisacáridos Bacterianos/química , Carragenina/química , Diabetes Mellitus/tratamiento farmacológico , Alimentos Formulados , Humanos , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier
17.
Vet Microbiol ; 295: 110149, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909417

RESUMEN

Avian reovirus (ARV) is a significant pathogen that causes various clinical diseases in chickens, including viral arthritis, chronic respiratory diseases, retarded growth, and malabsorption syndrome. These conditions result in substantial economic losses for the global poultry industry. MicroRNAs (miRNAs), a type of small noncoding RNAs that regulate gene expression post transcriptionally by silencing or degrading their RNA targets, play crucial roles in response to pathogenic infections. In this study, transfection of DF-1 cells with gga-miR-200a-3p, an upregulated miRNA observed in ARV-infected cells, significantly suppressed ARV-induced apoptosis by directly targeting GRB2 and impeded ARV replication. Conversely, knockdown of endogenous gga-miR-200a-3p in DF-1 cells using a specific miRNA inhibitor enhanced ARV-induced apoptosis and promoted GRB2 expression, thereby facilitating viral growth within cells. Consistently, inhibition of GRB2 activity through siRNA-mediated knockdown reduced viral titers. Therefore, gga-miR-200a-3p plays a vital antiviral role in the host response to ARV infection by suppressing apoptosis via direct targeting of GRB2 protein. This information enhances our understanding of the mechanisms by which host cells combat against ARV infection through self-encoded small RNA molecules and expands our knowledge regarding the involvement of microRNAs in the host response to pathogenic infections.


Asunto(s)
Apoptosis , Pollos , Proteína Adaptadora GRB2 , MicroARNs , Orthoreovirus Aviar , Replicación Viral , Animales , MicroARNs/genética , MicroARNs/metabolismo , Orthoreovirus Aviar/fisiología , Orthoreovirus Aviar/genética , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/genética , Línea Celular , Enfermedades de las Aves de Corral/virología , Infecciones por Reoviridae/virología , Infecciones por Reoviridae/veterinaria
18.
Ultrason Sonochem ; 104: 106843, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38471387

RESUMEN

The primary significance of this work is that the commercial yeast proteins particles were successfully used to characterize the high internal phase Pickering emulsions (HIPPEs). The different sonication time (0,3,7,11,15 min) was used to modulate the structure and interface characteristics of yeast proteins (YPs) that as Pickering particles. Immediately afterward, the influence of YPs particles prepared at different sonication time on the rheological behavior and coalescence mechanism of HIPPEs was investigated. The results indicate that the YPs sonicated for 7 min exhibited a more relaxed molecular structures and conformation, the smallest particle size, the highest H0 and optimal amphiphilicity (the three-phase contact (θ) was 88.91°). The transition from extended to compact conformations of YPs occurred when the sonication time exceeded 7 min, resulting in an augmentation of size of YPs particles, a reduction in surface hydrophobicity (H0), and an elevation in hydrophilicity. The HIPPEs stabilized by YPs particles sonicated for 7 min exhibited the highest adsorption interface protein percentage and a more homogeneous three-dimensional (3D) protein network, resulting in the smallest droplet size and the highest storage (G'). The HIPPEs sample that stabilized by YPs particles sonicated for 15 min showed the lowest adsorption protein percentage. This caused a reduction in the thickness of its interface protein layer and an enlargement in the droplet diameter (D [3,2]). It was prone to droplet coalescence according to the equation used to evaluate the coalescence probability of droplets (Eq (2)). And the non-adsorbed YPs particles form larger aggregation structures in the continuous phase and act as "structural agents" in 3D protein network. Therefore, mechanistically, the interface protein layer formed by YPs particles sonicated 7 min contributed more to HIPPEs stability. Whereas the "structural agents" contributed more to HIPPEs stability when the sonication time exceeded 7 min. The present results shed important new light on the application of commercial YPs in the functional food fields, acting as an available and effective alternative protein.


Asunto(s)
Proteínas Fúngicas , Sonicación , Emulsiones/química , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula
19.
Insights Imaging ; 15(1): 74, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499907

RESUMEN

OBJECTIVES: To develop a multiparameter magnetic resonance imaging (MRI)-based radiomics approach that can accurately predict the tumor cell proliferation status of serous ovarian carcinoma (SOC). MATERIALS AND METHODS: A total of 134 patients with SOC who met the inclusion and exclusion criteria were retrospectively screened from institution A, spanning from January 2016 to March 2022. Additionally, an external validation set comprising 42 SOC patients from institution B was also included. The region of interest was determined by drawing each ovarian mass boundaries manually slice-by-slice on T2-weighted imaging fat-suppressed fast spin-echo (T2FSE) and T1 with contrast enhancement (T1CE) images using ITK-SNAP software. The handcrafted radiomic features were extracted, and then were selected using variance threshold algorithm, SelectKBest algorithm, and least absolute shrinkage and selection operator. The optimal radiomic scores and the clinical/radiological independent predictors were integrated as a combined model. RESULTS: Compared with the area under the curve (AUC) values of each radiomic signature of T2FSE and T1CE, respectively, the AUC value of the radiomic signature (T1CE-T2FSE) was the highest in the training set (0.999 vs. 0.965 and 0.860). The homogeneous solid component of the ovarian mass was considered the only independent predictor of tumor cell proliferation status among the clinical/radiological variables. The AUC of the radiomic-radiological model was 0.999. CONCLUSIONS: The radiomic-radiological model combining radiomic scores and the homogeneous solid component of the ovarian mass can accurately predict tumor cell proliferation status of SOC which has high repeatability and may enable more targeted and effective treatment strategies. CRITICAL RELEVANCE STATEMENT: The proposed radiomic-radiological model combining radiomic scores and the homogeneous solid component of the ovarian mass can predict tumor cell proliferation status of SOC which has high repeatability and may guide individualized treatment programs. KEY POINTS: • The radiomic-radiological nomogram may guide individualized treatment programs of SOC. • This radiomic-radiological nomogram showed a favorable prediction ability. • Homogeneous slightly higher signal intensity on T2FSE is vital for Ki-67.

20.
Insights Imaging ; 15(1): 5, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38185779

RESUMEN

OBJECTIVES: To develop and validate a machine learning model using 18F-FDG PET/CT radiomics signature and clinical features to predict the presence of micropapillary and solid (MP/S) components in lung adenocarcinoma. METHODS: Eight hundred and forty-six patients who underwent preoperative PET/CT with pathologically confirmed adenocarcinoma were enrolled. After segmentation, 1688 radiomics features were extracted from PET/CT and selected to construct predictive models. Then, we developed a nomogram based on PET/CT radiomics integrated with clinical features. Receiver operating curves, calibration curves, and decision curve analysis (DCA) were performed for diagnostics assessment and test of the developed models for distinguishing patients with MP/S components from the patients without. RESULTS: PET/CT radiomics-clinical combined model could well distinguish patients with MP/S components from those without MP/S components (AUC = 0.87), which performed better than PET (AUC = 0.829, p < 0.05) or CT (AUC = 0.827, p < 0.05) radiomics models in the training cohort. In test cohorts, radiomics-clinical combined model outperformed the PET radiomics model in test cohort 1 (AUC = 0.859 vs 0.799, p < 0.05) and the CT radiomics model in test cohort 2 (AUC = 0.880 vs 0.829, p < 0.05). Calibration curve indicated good coherence between all model prediction and the actual observation in training and test cohorts. DCA revealed PET/CT radiomics-clinical model exerted the highest clinical benefit. CONCLUSION: 18F-FDG PET/CT radiomics signatures could achieve promising prediction efficiency to identify the presence of MP/S components in adenocarcinoma patients to help the clinician decide on personalized treatment and surveillance strategies. The PET/CT radiomics-clinical combined model performed best. CRITICAL RELEVANCE STATEMENT: 18F-FDG PET/CT radiomics signatures could achieve promising prediction efficiency to identify the presence of micropapillary and solid components in adenocarcinoma patients to help the clinician decide on personalized treatment and surveillance strategies.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda