Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 21(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502588

RESUMEN

In recent years, small unmanned aircraft systems (sUAS) have been used widely to monitor animals because of their customizability, ease of operating, ability to access difficult to navigate places, and potential to minimize disturbance to animals. Automatic identification and classification of animals through images acquired using a sUAS may solve critical problems such as monitoring large areas with high vehicle traffic for animals to prevent collisions, such as animal-aircraft collisions on airports. In this research we demonstrate automated identification of four animal species using deep learning animal classification models trained on sUAS collected images. We used a sUAS mounted with visible spectrum cameras to capture 1288 images of four different animal species: cattle (Bos taurus), horses (Equus caballus), Canada Geese (Branta canadensis), and white-tailed deer (Odocoileus virginianus). We chose these animals because they were readily accessible and white-tailed deer and Canada Geese are considered aviation hazards, as well as being easily identifiable within aerial imagery. A four-class classification problem involving these species was developed from the acquired data using deep learning neural networks. We studied the performance of two deep neural network models, convolutional neural networks (CNN) and deep residual networks (ResNet). Results indicate that the ResNet model with 18 layers, ResNet 18, may be an effective algorithm at classifying between animals while using a relatively small number of training samples. The best ResNet architecture produced a 99.18% overall accuracy (OA) in animal identification and a Kappa statistic of 0.98. The highest OA and Kappa produced by CNN were 84.55% and 0.79 respectively. These findings suggest that ResNet is effective at distinguishing among the four species tested and shows promise for classifying larger datasets of more diverse animals.


Asunto(s)
Aprendizaje Profundo , Ciervos , Aeronaves , Algoritmos , Animales , Bovinos , Caballos , Redes Neurales de la Computación
2.
J Imaging ; 8(5)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35621891

RESUMEN

In this research, we study a new metaheuristic algorithm called Moth-Flame Optimization (MFO) for hyperspectral band selection. With the hundreds of highly correlated narrow spectral bands, the number of training samples required to train a statistical classifier is high. Thus, the problem is to select a subset of bands without compromising the classification accuracy. One of the ways to solve this problem is to model an objective function that measures class separability and utilize it to arrive at a subset of bands. In this research, we studied MFO to select optimal spectral bands for classification. MFO is inspired by the behavior of moths with respect to flames, which is the navigation method of moths in nature called transverse orientation. In MFO, a moth navigates the search space through a process called transverse orientation by keeping a constant angle with the Moon, which is a compelling strategy for traveling long distances in a straight line, considering that the Moon's distance from the moth is considerably long. Our research tested MFO on three benchmark hyperspectral datasets-Indian Pines, University of Pavia, and Salinas. MFO produced an Overall Accuracy (OA) of 88.98%, 94.85%, and 97.17%, respectively, on the three datasets. Our experimental results indicate that MFO produces better OA and Kappa when compared to state-of-the-art band selection algorithms such as particle swarm optimization, grey wolf, cuckoo search, and genetic algorithms. The analysis results prove that the proposed approach effectively addresses the spectral band selection problem and provides a high classification accuracy.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda