Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
J Am Chem Soc ; 146(26): 17765-17772, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38902874

RESUMEN

Chirality, a fundamental attribute of nature, significantly influences a wide range of phenomena related to physical properties, chemical reactions, biological pharmacology, and so on. As a pivotal aspect of chirality research, chirality recognition contributes to the synthesis of complex chiral products from simple chiral compounds and exhibits intricate interplay between chiral materials. However, macroscopic detection technologies cannot unveil the dynamic process and intrinsic mechanisms of single-molecule chirality recognition. Herein, we present a single-molecule detection platform based on graphene-molecule-graphene single-molecule junctions to measure the chirality recognition involving interactions between amines and chiral alcohols. This approach leads to the realization of in situ and real-time direct observation of chirality recognition at the single-molecule level, demonstrating that chiral alcohols exhibit compelling potential to induce the formation of the corresponding chiral configuration of molecules. The amalgamation of theoretical analyses with experimental findings reveals a synergistic action between electrostatic interactions and steric hindrance effects in the chirality recognition process, thus substantiating the microscopic mechanism governing the chiral structure-activity relationship. These studies open up a pathway for exploring novel chiral phenomena from the fundamental limits of chemistry, such as chiral origin and chiral amplification, and offer important insights into the precise synthesis of chiral materials.

2.
Small ; : e2309054, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081131

RESUMEN

Photodynamic therapy (PDT) is an effective approach for treating melanoma. However, the photosensitizers employed in PDT can accumulate in healthy tissues, potentially causing harm to normal cells and resulting in side effects such as heightened photosensitivity. To address this, an activatable photosensitizer (PSD) by linking PpIX with a fluorescence quencher using a disulfide bond is designed. PSD responded to endogenous GSH, showing high selectivity for A375 cells. To enhance PSD's bioavailability and anticancer efficacy, an enzyme-responsive nanoplatform based on a lonidamine-derived self-assembling peptide is developed. Initially, PSD and the peptide self-assembled into nanoparticles, displaying potent tumor targeting of PSD in vivo. Upon cell uptake, these nanoparticles specifically responded to elevated cathepsin B, causing nanoparticle disintegration and releasing PSD and lonidamine prodrug (LND-1). PSD is selectively activated by GSH for cancer-specific fluorescence imaging and precision PDT, while LND-1 targeted mitochondria, forming a fibrous lonidamine depot in situ and intensifying photosensitizer's cytotoxicity through ROS generation, mitochondrial dysfunction, and DNA damage. Notably, intravenous administration of LND-1-PEG@PSD with light irradiation significantly suppressed A375-xenografted mouse tumor growth, with minimal systemic toxicity. Together, the synergy of activatable photosensitizer and enzyme-responsive nanoplatform elevates PDT precision and diminishes side effects, showcasing significant potential in the realm of cancer nanomedicine.

3.
Acta Biochim Biophys Sin (Shanghai) ; 55(4): 587-600, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37092860

RESUMEN

Ginsenoside Rh3 (GRh3) is a seminatural product obtained by chemical processing after isolation from Chinese herbal medicine that has strong antitumor activity against human tumors. However, its antitumor role remains to be elucidated. The aim of this study is to explore the mechanisms underlying the tumor suppressive activity of GRh3 from the perspective of pyroptosis and ferroptosis. GRh3 eliminates colorectal cancer (CRC) cells by activating gasdermin D (GSDMD)-dependent pyroptosis and suppressing solute carrier family 7 member 11 (SLC7A11), resulting in ferroptosis activation through the Stat3/p53/NRF2 axis. GRh3 suppresses nuclear factor erythroid 2-related factor 2 (NRF2) entry into the nucleus, leading to the decrease of heme oxygenase 1 (HO-1) expression, which in turn promotes NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and caspase-1 expression. Finally, caspase-1 activates GSDMD-dependent pyroptosis. Furthermore, GRh3 prevents NRF2 from entering the nucleus, which suppresses SLC7A11, causing the depletion of glutathione (GSH) and accumulation of iron, lipid reactive oxygen species (ROS) and malondialdehyde (MDA), and eventually leading to ferroptosis in CRC cells. In addition, GRh3 effectively inhibits the proliferation of CRC cells in vitro and in nude mouse models. Collectively, GRh3 triggers pyroptotic cell death and ferroptotic cell death in CRC cells via the Stat3/p53/NRF2 axis with minimal harm to normal cells, showing great anticancer potential.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Humanos , Animales , Ratones , Piroptosis , Factor 2 Relacionado con NF-E2/genética , Proteína p53 Supresora de Tumor , Caspasa 1 , Glutatión , Ratones Desnudos , Neoplasias Colorrectales/tratamiento farmacológico , Factor de Transcripción STAT3
4.
J Am Chem Soc ; 144(45): 20797-20803, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36274261

RESUMEN

The PNP structure realized by energy band engineering is widely used in various electronic and optoelectronic devices. In this work, we succeed in constructing a PNP-type single-molecule junction and explore the intrinsic characteristics of the PNP structure at the single-molecule level. A back-to-back azulene molecule is designed with opposite ∼1.7 D dipole moments to create PNP-type single-molecule junctions. In combination with theoretical and experimental studies, it is found that the intrinsic dipole can effectively adjust single-molecule charge transport and the corresponding potential barriers. This energy band control and charge transport regulation at the single-molecule level improve deep understanding of molecular charge transport mechanisms and provide important insights into the development of high-performance functional molecular nanocircuits toward practical applications.


Asunto(s)
Electrónica , Nanotecnología
5.
J Am Chem Soc ; 144(7): 3146-3153, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35038385

RESUMEN

An accurate single-molecule kinetic isotope effect (sm-KIE) was applied to circumvent the inherent limitation of conventional ensemble KIE by using graphene-molecule-graphene single-molecule junctions. In situ monitoring of the single-molecule reaction trajectories in real time with high temporal resolution has the capability to characterize the deeper information brought by KIE. The C-O bond cleavage and the C-C bond formation of the transition state (TS) were observed in the Claisen rearrangement through the secondary kinetic isotope effect, demonstrating the high detection sensitivity and accuracy of this method. More interestingly, this sm-KIE can be used to determine TS structures under different electric fields, revealing the multidimensional regulation of the TS. The detection and manipulation of the TS provide a broad perspective to understand and optimize chemical reactions and biomimetic progress.

6.
Angew Chem Int Ed Engl ; 61(45): e202210939, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36098651

RESUMEN

Intermolecular charge transport plays a vital role in the fields of electronics, as well as biochemical systems. Here, we design supramolecular dimer junctions and investigate the effects of charge state and energy level alignment on charge transport under nanoconfinement. Incoherent tunneling caused by thermally-induced vibrations is enhanced in positively charged systems. The transition between coherent and incoherent tunneling is associated with specific molecular vibration modes. Positively charged systems with smaller torsional barriers and vibrational frequencies result in lower transition temperatures. Multiple thermal effects have a great impact on the conductance in the off-resonant tunneling, while thermally-induced vibron-assisted tunneling contributes more to the transport in the resonant tunneling. These investigations offer a deep mechanism understanding of intermolecular charge transport and facilitate the development of practical functional molecular devices.


Asunto(s)
Electrónica , Vibración , Transporte de Electrón
7.
Mar Drugs ; 18(9)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916975

RESUMEN

Cyclophosphamide (CTX) is a widely used anticancer drug with severe nephrotoxicity. The pentadecapeptide (RVAPEEHPVEGRYLV) from Cyclina sinensis (SCSP) has been shown to affect immunity and to protect the liver. Hence, the purpose of this study was to investigate the ameliorating effect of SCSP on CTX-induced nephrotoxicity in mice. We injected male ICR mice with CTX (80 mg/kg·day) and measured the nephrotoxicity indices, levels of antioxidant enzymes, malondialdehyde (MDA), inflammatory factors, as well as the major proteins of the NF-κB and apoptotic pathways. Cyclophosphamide induced kidney injury; the levels of kidney-injury indicators and cytokines recovered remarkably in mice after receiving SCSP. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) increased, while there was a significant decrease in MDA levels. The kidney tissue damage induced by CTX was also repaired to a certain extent. In addition, SCSP significantly inhibited inflammatory factors and apoptosis by regulating the NF-κB and apoptotic pathways. Our study shows that SCSP has the potential to ameliorate CTX-induced nephrotoxicity and may be used as a therapeutic adjuvant to ameliorate CTX-induced nephrotoxicity.


Asunto(s)
Antiinflamatorios/farmacología , Bivalvos/metabolismo , Enfermedades Renales/tratamiento farmacológico , Riñón/efectos de los fármacos , Péptidos/farmacología , Secuencia de Aminoácidos , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Ciclofosfamida , Citocinas/metabolismo , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Malondialdehído/metabolismo , Ratones Endogámicos ICR , FN-kappa B/metabolismo , Péptidos/química , Péptidos/aislamiento & purificación
8.
Adv Healthc Mater ; : e2401787, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101321

RESUMEN

Type I photodynamic therapy (PDT) generates reactive oxygen species (ROS) through oxygen-independent photoreactions, making it a promising method for treating hypoxic tumors. However, the superoxide anion (O2∙-) generated usually exhibits a low oxidation capacity, restricting the antitumor efficacy of PDT in clinical practice. Herein, a photoactivated self-assembled nanoreactor (1-NBS@CeO2) is designed through integration of type I PDT and cerium oxide (CeO2) nanozymes for inducing cascade-amplified oxidative stress in hypoxic tumors. The nanoreactor is constructed though co-assembly of an amphiphilic peptide (1-NBS) and CeO2, giving well-dispersed spherical nanoparticles with enhanced superoxide dismutase (SOD)-like and peroxidase (POD)-like activities. Following light irradiation, 1-NBS@CeO2 undergoes type I photoreactions to generated O2∙-, which is further catalyzed by the nanoreactors, ultimately forming hypertoxic hydroxyl radical (∙OH) through cascade-amplified reactions. The PDT treatment using 1-NBS@CeO2 results in elevation of intracellular ROS and depletion of GSH content in A375 cells, thereby inducing mitochondrial dysfunction and triggering apoptosis and ferroptosis of tumor cells. Importantly, intravenous administration of 1-NBS@CeO2 alongside light irradiation showcases enhances antitumor efficacy and satisfactory biocompatibility in vivo. Together, the self-assembled nanoreactor facilitates cascade-amplified photoreactions for achieving efficacious type I PDT, which holds great promise in developing therapeutic modules towards hypoxic tumors.

9.
Adv Mater ; 35(16): e2209750, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36718825

RESUMEN

A robust single-molecule light-emitting diode (SM-LED) with high color purity, linear polarization, and efficiency tunability is prepared by covalently integrating one fluorescent molecule into nanogapped graphene electrodes. Furthermore, single-molecule Förster resonance energy transfer from the electroluminescent center to different accepters is achieved through rational molecular engineering, enabling construction of a multicolor SM-LED. All these characterizations are accomplished in the photoelectrical integration system with high temporal/spatial/energy resolution, demonstrating the capability of the single-photon emission of SM-LEDs. The success in developing high-performance SM-LEDs inspires the development of the next generation of commercial display devices and promises a single-photon emitter for use in quantum computation and quantum communication.

10.
Integr Cancer Ther ; 22: 15347354231172117, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37132527

RESUMEN

BACKGROUND: Cisplatin is a widely used anticancer drug in clinic, but it has a damaging effect on skeletal muscle cells. Clinical observation showed that Yiqi Chutan formula (YCF) had a alleviating effect on cisplatin toxicity. METHODS: In vitro cell model and in vivo animal model were used to observe the damage effect of cisplatin on skeletal muscle cells and verify that YCF reversed cisplatin induced skeletal muscle damage. The levels of oxidative stress, apoptosis and ferroptosis were measured in each group. RESULTS: Both in vitro and in vivo studies have confirmed that cisplatin increases the level of oxidative stress in skeletal muscle cells, thus inducing cell apoptosis and ferroptosis. YCF treatment can effectively reverse cisplatin induced oxidative stress in skeletal muscle cells, thereby alleviating cell apoptosis and ferroptosis, and ultimately protecting skeletal muscle. CONCLUSIONS: YCF reversed cisplatin-induced apoptosis and ferroptosis of skeletal muscle by alleviating oxidative stress.


Asunto(s)
Cisplatino , Ferroptosis , Animales , Cisplatino/farmacología , Apoptosis , Estrés Oxidativo , Músculo Esquelético
11.
J Oncol ; 2023: 5486017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36814560

RESUMEN

Background: The incidence of cancer-related fatigue (CRF) is increasing, but its lack of clear pathogenesis makes its prevention and treatment difficult. Therefore, it is of great significance to clarify the pathogenesis of CRF and find effective methods to treat it. Methods: The CRF model was established by intraperitoneal injection of LLC cells in ICR mice to explore the pathogenesis of CRF and verify the therapeutic effect of the Yifei-Sanjie pill (YFSJ). The active components of YFSJ were found by LC/MS, the in vitro inflammatory infiltration model of skeletal muscle was constructed by TNF-α and C2C12 myoblasts, and the results of in vivo experiments were verified by this model. Results: Behavioral analysis results showed that YFSJ alleviated CRF; histological examination results showed that YFSJ could reverse the tumor microenvironment leading to skeletal muscle injury; ELISA and RNA-seq results showed that the occurrence of CRF and the therapeutic effect of YFSJ were closely related to the tumor inflammatory microenvironment; IHC and WB results showed that the occurrence of CRF and the therapeutic effect of YFSJ were closely related to the Stat3-related signaling pathway and autophagy. Conclusions: YFSJ can reduce the level of inflammation in the tumor microenvironment in vivo, inhibit the abnormal activation of the Stat3/HIF-1α/BNIP3 signaling pathway induced by tumor-related inflammation, thereby inhibiting the overactivation of mitophagy in skeletal muscle, and finally alleviate CRF. Quercetin, one of the components of YFSJ, plays an important role in inhibiting the phosphorylation activation of Stat3.

12.
Nat Chem ; 15(7): 972-979, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37188972

RESUMEN

Stereochemistry has an essential role in organic synthesis, biological catalysis and physical processes. In situ chirality identification and asymmetric synthesis are non-trivial tasks, especially for single-molecule systems. However, going beyond the chiral characterization of a large number of molecules (which inevitably leads to ensemble averaging) is crucial for elucidating the different properties induced by the chiral nature of the molecules. Here we report direct monitoring of chirality variations during a Michael addition followed by proton transfer and keto-enol tautomerism in a single molecule. Taking advantage of the chirality-induced spin selectivity effect, continuous current measurements through a single-molecule junction revealed in situ chirality variations during the reaction. Chirality identification at a high sensitivity level provides a promising tool for the study of symmetry-breaking reactions and sheds light on the origin of the chirality-induced spin selectivity effect itself.

13.
Adv Mater ; 34(36): e2204827, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35862243

RESUMEN

A robust single-molecule memristor is prepared by covalently integrating one phenol molecule with multiple binding sites into nanogapped graphene electrodes. Multilevel resistance switching is realized by the electric-field-manipulated reconfiguration of the acyl moiety on the phenol center, that is, the Fries rearrangement. In situ measurements of the reaction trajectories with an initial single substrate and an intermediate break through the limitation of macroscopic experiments, therefore unveiling both intramolecular and intermolecular mechanistic pathways (a long-term controversy) as well as comprehensive dynamic information. Based on this advance, high-performance single-molecule memristors in both the solution and solid states are achieved successively, providing a new understanding of memristive systems and neural network computing.

14.
Artículo en Inglés | MEDLINE | ID: mdl-35677385

RESUMEN

Colorectal cancer (CRC) is a severe threat to human health. Ginsenosides such as ginsenoside Rh4 have been widely studied in the antitumor field. Here, we investigated the antiproliferative activity and mechanism of Rh4 against CRC in vivo and in vitro. The CRC xenograft model showed that Rh4 inhibited xenograft tumor growth with few side effects (p < 0.05). As determined by MTT colorimetric assays, Western blotting, and immunohistochemical analysis, Rh4 effectively inhibited CRC cell proliferation through autophagy and ferroptosis (p < 0.05). Rh4 significantly upregulated autophagy and ferroptosis marker expression in CRC cells and xenograft tumor tissues in the present study (p < 0.05). Interestingly, the ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed Rh4-induced ferroptosis (p < 0.05). Moreover, the autophagy inhibitor 3-methyladenine (3-MA) also reversed Rh4-induced ferroptosis (p < 0.05). These results indicate that Rh4-induced ferroptosis is regulated via the autophagy pathway. In addition, Rh4 increased reactive oxygen species (ROS) accumulation, leading to the activation of the ROS/p53 signaling pathway (p < 0.05). Transcriptome sequencing also confirmed this (p < 0.05). Moreover, the ROS scavenger N-acetyl-cysteine (NAC) reversed the inhibitory effect of Rh4 on CRC cells (p < 0.05). Therefore, this study proves that Rh4 inhibits cancer cell proliferation by activating the ROS/p53 signaling pathway and activating autophagy to induce ferroptosis, which provides necessary scientific evidence of the great anticancer potential of Rh4.

15.
Adv Sci (Weinh) ; 9(13): e2200022, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35233985

RESUMEN

In this work, a real-time precise electrical method to directly monitor the stochastic binding dynamics of a single supramolecule based on the host-guest interaction between a cyclodextrin and an azo compound is reported. Different intermolecular binding states during the binding process are distinguished by conductance signals detected from graphene-molecule-graphene single-molecule junctions. In combination with theoretical calculations, the reciprocating and unidirectional motions in the trans form as well as the restrained reciprocating motion in the cis form due to the steric hindrance is observed, which could be reversibly switched by visible and UV irradiation. The integration of individual supramolecules into nanocircuits not only offers a facile and effective strategy to probe the dynamic process of supramolecular systems, but also paves the way to construct functional molecular devices toward real applications such as switches, sensors, and logic devices.


Asunto(s)
Ciclodextrinas , Grafito , Compuestos Azo/química , Nanotecnología , Rayos Ultravioleta
16.
Vis Comput Ind Biomed Art ; 4(1): 29, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862574

RESUMEN

Light fields are vector functions that map the geometry of light rays to the corresponding plenoptic attributes. They describe the holographic information of scenes by representing the amount of light flowing in every direction through every point in space. The physical concept of light fields was first proposed in 1936, and light fields are becoming increasingly important in the field of computer graphics, especially with the fast growth of computing capacity as well as network bandwidth. In this article, light field imaging is reviewed from the following aspects with an emphasis on the achievements of the past five years: (1) depth estimation, (2) content editing, (3) image quality, (4) scene reconstruction and view synthesis, and (5) industrial products because the technologies of lights fields also intersect with industrial applications. State-of-the-art research has focused on light field acquisition, manipulation, and display. In addition, the research has extended from the laboratory to industry. According to these achievements and challenges, in the near future, the applications of light fields could offer more portability, accessibility, compatibility, and ability to visualize the world.

17.
Sci Adv ; 7(4)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33523936

RESUMEN

Precise time trajectories and detailed reaction pathways of the Diels-Alder reaction were directly observed using accurate single-molecule detection on an in situ label-free single-molecule electrical detection platform. This study demonstrates the well-accepted concerted mechanism and clarifies the role of charge transfer complexes with endo or exo configurations on the reaction path. An unprecedented stepwise pathway was verified at high temperatures in a high-voltage electric field. Experiments and theoretical results revealed an electric field-catalyzed mechanism that shows the presence of a zwitterionic intermediate with one bond formation and variation of concerted and stepwise reactions by the strength of the electric field, thus establishing a previously unidentified approach for mechanistic control by electric field catalysis.

18.
Nat Nanotechnol ; 16(11): 1214-1223, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34475558

RESUMEN

Conventional analytic techniques that measure ensemble averages and static disorder provide essential knowledge of the reaction mechanisms of organic and organometallic reactions. However, single-molecule junctions enable the in situ, label-free and non-destructive sensing of molecular reaction processes at the single-event level with an excellent temporal resolution. Here we deciphered the mechanism of Pd-catalysed Suzuki-Miyaura coupling by means of a high-resolution single-molecule platform. Through molecular engineering, we covalently integrated a single molecule Pd catalyst into nanogapped graphene point electrodes. We detected sequential electrical signals that originated from oxidative addition/ligand exchange, pretransmetallation, transmetallation and reductive elimination in a periodic pattern. Our analysis shows that the transmetallation is the rate-determining step of the catalytic cycle and clarifies the controversial transmetallation mechanism. Furthermore, we determined the kinetic and thermodynamic constants of each elementary step and the overall catalytic timescale of this Suzuki-Miyaura coupling. Our work establishes the single-molecule platform as a detection technology for catalytic organochemistry that can monitor transition-metal-catalysed reactions in real time.

19.
J Huazhong Univ Sci Technolog Med Sci ; 37(3): 371-378, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28585133

RESUMEN

The therapeutic potential of curcumin (Cur) is hampered by its poor aqueous solubility and low bioavailability. The aim of this study was to determine whether Cur nanoemulsions enhance the efficacy of Cur against prostate cancer cells and increase the oral absorption of Cur. Cur nanoemulsions were developed using the self-microemulsifying method and characterized by their morphology, droplet size and zeta potential. The results showed that the cytotoxicity and cell uptake were considerably increased with Cur nanoemulsions compared to free Cur. Cur nanoemulsions exhibited a significantly prolonged biological activity and demonstrated better therapeutic efficacy than free Cur, as assessed by apoptosis and cell cycle studies. In situ single-pass perfusion studies demonstrated higher effective permeability coefficient and absorption rate constant for Cur nanoemulsions than for free Cur. Our study suggested that Cur nanoemulsions can be used as an effective drug delivery system to enhance the anticancer effect and oral bioavailability of Cur.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Curcumina/farmacología , Absorción Intestinal/efectos de los fármacos , Nanoestructuras/administración & dosificación , Próstata/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos/farmacocinética , Apoptosis/efectos de los fármacos , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 7/genética , Caspasa 7/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Curcumina/farmacocinética , Duodeno/efectos de los fármacos , Duodeno/metabolismo , Emulsiones , Expresión Génica , Glicerol/química , Humanos , Íleon/efectos de los fármacos , Íleon/metabolismo , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Masculino , Nanoestructuras/química , Tamaño de la Partícula , Polietilenglicoles/química , Próstata/metabolismo , Próstata/patología , Ratas , Ratas Wistar , Tensoactivos/química
20.
Artículo en Zh | WPRIM | ID: wpr-333491

RESUMEN

The therapeutic potential of curcumin (Cur) is hampered by its poor aqueous solubility and low bioavailability.The aim of this study was to determine whether Cur nanoemulsions enhance the efficacy of Cur against prostate cancer cells and increase the oral absorption of Cur.Cur nanoemulsions were developed using the self-microemulsifying method and characterized by their morphology,droplet size and zeta potential.The results showed that the cytotoxicity and cell uptake were considerably increased with Cur nanoemulsions compared to free Cur.Cur nanoemulsions exhibited a significantly prolonged biological activity and demonstrated better therapeutic efficacy than free Cur,as assessed by apoptosis and cell cycle studies.In siru single-pass perfusion studies demonstrated higher effective permeability coefficient and absorption rate constant for Cur nanoemulsions than for free Cur.Our study suggested that Cur nanoemulsions can be used as an effective drug delivery system to enhance the anticancer effect and oral bioavailability of Cur.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda