Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 4.296
Filtrar
Más filtros

Publication year range
1.
Cell ; 186(5): 1026-1038.e20, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36868208

RESUMEN

Down syndrome (DS) is a neurological disorder with multiple immune-related symptoms; however, crosstalk between the CNS and peripheral immune system remains unexplored. Using parabiosis and plasma infusion, we found that blood-borne factors drive synaptic deficits in DS. Proteomic analysis revealed elevation of ß2-microglobulin (B2M), a major histocompatibility complex class I (MHC-I) component, in human DS plasma. Systemic administration of B2M in wild-type mice led to synaptic and memory defects similar to those observed in DS mice. Moreover, genetic ablation of B2m or systemic administration of an anti-B2M antibody counteracts synaptic impairments in DS mice. Mechanistically, we demonstrate that B2M antagonizes NMDA receptor (NMDAR) function through interactions with the GluN1-S2 loop; blocking B2M-NMDAR interactions using competitive peptides restores NMDAR-dependent synaptic function. Our findings identify B2M as an endogenous NMDAR antagonist and reveal a pathophysiological role for circulating B2M in NMDAR dysfunction in DS and related cognitive disorders.


Asunto(s)
Síndrome de Down , Receptores de N-Metil-D-Aspartato , Microglobulina beta-2 , Animales , Humanos , Ratones , Microglobulina beta-2/metabolismo , Microglobulina beta-2/farmacología , Disfunción Cognitiva/metabolismo , Reacciones Cruzadas , Parabiosis , Proteómica , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Síndrome de Down/sangre , Síndrome de Down/metabolismo
2.
Annu Rev Biochem ; 91: 449-473, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35303792

RESUMEN

Metals are essential components in life processes and participate in many important biological processes. Dysregulation of metal homeostasis is correlated with many diseases. Metals are also frequently incorporated into diagnosis and therapeutics. Understanding of metal homeostasis under (patho)physiological conditions and the molecular mechanisms of action of metallodrugs in biological systems has positive impacts on human health. As an emerging interdisciplinary area of research, metalloproteomics involves investigating metal-protein interactions in biological systems at a proteome-wide scale, has received growing attention, and has been implemented into metal-related research. In this review, we summarize the recent advances in metalloproteomics methodologies and applications. We also highlight emerging single-cell metalloproteomics, including time-resolved inductively coupled plasma mass spectrometry, mass cytometry, and secondary ion mass spectrometry. Finally, we discuss future perspectives in metalloproteomics, aiming to attract more original research to develop more advanced methodologies, which could be utilized rapidly by biochemists or biologists to expand our knowledge of how metal functions in biology and medicine.


Asunto(s)
Investigación Biomédica , Metaloproteínas , Humanos , Metaloproteínas/análisis , Metaloproteínas/química , Metaloproteínas/genética , Metales/análisis , Metales/química , Proteoma/genética , Proteómica/métodos
3.
Cell ; 173(1): 53-61.e9, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29551270

RESUMEN

Anatomically modern humans interbred with Neanderthals and with a related archaic population known as Denisovans. Genomes of several Neanderthals and one Denisovan have been sequenced, and these reference genomes have been used to detect introgressed genetic material in present-day human genomes. Segments of introgression also can be detected without use of reference genomes, and doing so can be advantageous for finding introgressed segments that are less closely related to the sequenced archaic genomes. We apply a new reference-free method for detecting archaic introgression to 5,639 whole-genome sequences from Eurasia and Oceania. We find Denisovan ancestry in populations from East and South Asia and Papuans. Denisovan ancestry comprises two components with differing similarity to the sequenced Altai Denisovan individual. This indicates that at least two distinct instances of Denisovan admixture into modern humans occurred, involving Denisovan populations that had different levels of relatedness to the sequenced Altai Denisovan. VIDEO ABSTRACT.


Asunto(s)
Genoma Humano , Animales , Pueblo Asiatico/genética , Humanos , Hombre de Neandertal/genética , Selección Genética , Secuenciación del Exoma
4.
Mol Cell ; 83(23): 4304-4317.e8, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37949069

RESUMEN

RNA-binding proteins (RBPs) control messenger RNA fate in neurons. Here, we report a mechanism that the stimuli-induced neuronal translation is mediated by phosphorylation of a YTHDF1-binding protein FMRP. Mechanistically, YTHDF1 can condense with ribosomal proteins to promote the translation of its mRNA targets. FMRP regulates this process by sequestering YTHDF1 away from the ribosome; upon neuronal stimulation, FMRP becomes phosphorylated and releases YTHDF1 for translation upregulation. We show that a new small molecule inhibitor of YTHDF1 can reverse fragile X syndrome (FXS) developmental defects associated with FMRP deficiency in an organoid model. Our study thus reveals that FMRP and its phosphorylation are important regulators of activity-dependent translation during neuronal development and stimulation and identifies YTHDF1 as a potential therapeutic target for FXS in which developmental defects caused by FMRP depletion could be reversed through YTHDF1 inhibition.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Humanos , Fosforilación , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Proteínas Ribosómicas/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
5.
Cell ; 157(2): 486-498, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24725413

RESUMEN

Cyclin-dependent kinase 5 regulates numerous neuronal functions with its activator, p35. Under neurotoxic conditions, p35 undergoes proteolytic cleavage to liberate p25, which has been implicated in various neurodegenerative diseases. Here, we show that p25 is generated following neuronal activity under physiological conditions in a GluN2B- and CaMKIIα-dependent manner. Moreover, we developed a knockin mouse model in which endogenous p35 is replaced with a calpain-resistant mutant p35 (Δp35KI) to prevent p25 generation. The Δp35KI mice exhibit impaired long-term depression and defective memory extinction, likely mediated through persistent GluA1 phosphorylation at Ser845. Finally, crossing the Δp35KI mice with the 5XFAD mouse model of Alzheimer's disease (AD) resulted in an amelioration of ß-amyloid (Aß)-induced synaptic depression and cognitive impairment. Together, these results reveal a physiological role of p25 production in synaptic plasticity and memory and provide new insights into the function of p25 in Aß-associated neurotoxicity and AD-like pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Calpaína/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cognición , Quinasa 5 Dependiente de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Endocitosis , Técnicas de Sustitución del Gen , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Ratones , Proteínas del Tejido Nervioso/genética , Fosfotransferasas , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis
6.
Nature ; 616(7958): 712-718, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020031

RESUMEN

Metal-halide perovskites (MHPs) have been successfully exploited for converting photons to charges or vice versa in applications of solar cells, light-emitting diodes and solar fuels1-3, for which all these applications involve strong light. Here we show that self-powered polycrystalline perovskite photodetectors can rival the commercial silicon photomultipliers (SiPMs) for photon counting. The photon-counting capability of perovskite photon-counting detectors (PCDs) is mainly determined by shallow traps, despite that deep traps also limit charge-collection efficiency. Two shallow traps with energy depth of 5.8 ± 0.8 millielectronvolts (meV) and 57.2 ± 0.1 meV are identified in polycrystalline methylammonium lead triiodide, which mainly stay at grain boundaries and the surface, respectively. We show that these shallow traps can be reduced by grain-size enhancement and surface passivation using diphenyl sulfide, respectively. It greatly suppresses dark count rate (DCR) from >20,000 counts per second per square millimetre (cps mm-2) to 2 cps mm-2 at room temperature, enabling much better response to weak light than SiPMs. The perovskite PCDs can collect γ-ray spectra with better energy resolution than SiPMs and maintain performance at high temperatures up to 85 °C. The zero-bias operation of perovskite detectors enables no drift of noise and detection property. This study opens a new application of photon counting for perovskites that uses their unique defect properties.

7.
Genome Res ; 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38839374

RESUMEN

The human leukocyte antigen (HLA) genes and the killer cell immunoglobulin-like receptor (KIR) genes are critical to immune responses and are associated with many immune-related diseases. Located in highly polymorphic regions, it is difficult to study them with traditional short-read alignment-based methods. Although modern long-read assemblers can often assemble these genes, using existing tools to annotate HLA and KIR genes in these assemblies remains a nontrivial task. Here, we describe Immuannot, a new computation tool to annotate the gene structures of HLA and KIR genes and to type the allele of each gene. Applying Immuannot to 56 regional and 212 whole-genome assemblies from previous studies, we annotate 9931 HLA and KIR genes and found that almost half of these genes, 4068, have novel sequences compared with the current Immuno Polymorphism Database (IPD). These novel gene sequences are represented by 2664 distinct alleles, some of which contained nonsynonymous variations, resulting in 92 novel protein sequences. We demonstrate the complex haplotype structures at the two loci and report the linkage between HLA/KIR haplotypes and gene alleles. We anticipate that Immuannot will speed up the discovery of new HLA/KIR alleles and enable the association of HLA/KIR haplotype structures with clinical outcomes in the future.

8.
Plant Cell ; 36(9): 3451-3466, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38833610

RESUMEN

Reactive oxygen species (ROS) production is a key event in modulating plant responses to hypoxia and post-hypoxia reoxygenation. However, the molecular mechanism by which hypoxia-associated ROS homeostasis is controlled remains largely unknown. Here, we showed that the calcium-dependent protein kinase CPK16 regulates plant hypoxia tolerance by phosphorylating the plasma membrane-anchored NADPH oxidase respiratory burst oxidase homolog D (RBOHD) to regulate ROS production in Arabidopsis (Arabidopsis thaliana). In response to hypoxia or reoxygenation, CPK16 was activated through phosphorylation of its Ser274 residue. The cpk16 knockout mutant displayed enhanced hypoxia tolerance, whereas CPK16-overexpressing (CPK16-OE) lines showed increased sensitivity to hypoxic stress. In agreement with these observations, hypoxia and reoxygenation both induced ROS accumulation in the rosettes of CPK16-OEs more strongly than in the rosettes of the cpk16-1 mutant or the wild type. Moreover, CPK16 interacted with and phosphorylated the N-terminus of RBOHD at 4 serine residues (Ser133, Ser148, Ser163, and Ser347) that were necessary for hypoxia- and reoxygenation-induced ROS accumulation. Furthermore, the hypoxia-tolerant phenotype of cpk16-1 was fully abolished in the cpk16 rbohd double mutant. Thus, we have uncovered a regulatory mechanism by which the CPK16-RBOHD module shapes the ROS production during hypoxia and reoxygenation in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , NADPH Oxidasas , Especies Reactivas de Oxígeno , Arabidopsis/genética , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilación , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Regulación de la Expresión Génica de las Plantas
9.
Proc Natl Acad Sci U S A ; 121(35): e2400385121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39167602

RESUMEN

Type 2 diabetes (T2D) is potentially linked to disordered tryptophan metabolism that attributes to the intricate interplay among diet, gut microbiota, and host physiology. However, underlying mechanisms are substantially unknown. Comparing the gut microbiome and metabolome differences in mice fed a normal diet (ND) and high-fat diet (HFD), we uncover that the gut microbiota-dependent tryptophan metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) is present at lower concentrations in mice with versus without insulin resistance. We further demonstrate that the microbial transformation of tryptophan into 5-HIAA is mediated by Burkholderia spp. Additionally, we show that the administration of 5-HIAA improves glucose intolerance and obesity in HFD-fed mice, while preserving hepatic insulin sensitivity. Mechanistically, 5-HIAA promotes hepatic insulin signaling by directly activating AhR, which stimulates TSC2 transcription and thus inhibits mTORC1 signaling. Moreover, T2D patients exhibit decreased fecal levels of 5-HIAA. Our findings identify a noncanonical pathway of microbially producing 5-HIAA from tryptophan and indicate that 5-HIAA might alleviate the pathogenesis of T2D.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Resistencia a la Insulina , Hígado , Diana Mecanicista del Complejo 1 de la Rapamicina , Receptores de Hidrocarburo de Aril , Transducción de Señal , Triptófano , Proteína 2 del Complejo de la Esclerosis Tuberosa , Animales , Dieta Alta en Grasa/efectos adversos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Triptófano/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Receptores de Hidrocarburo de Aril/metabolismo , Hígado/metabolismo , Humanos , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Masculino , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/microbiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
10.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38546325

RESUMEN

Expression quantitative trait loci (eQTLs) are used to inform the mechanisms of transcriptional regulation in eukaryotic cells. However, the specificity of genome-wide eQTL identification is limited by stringent control for false discoveries. Here, we described a method based on the non-homogeneous Poisson process to identify 125 489 regions with highly frequent, multiple eQTL associations, or 'eQTL-hotspots', from the public database of 59 human tissues or cell types. We stratified the eQTL-hotspots into two classes with their distinct sequence and epigenomic characteristics. Based on these classifications, we developed a machine-learning model, E-SpotFinder, for augmented discovery of tissue- or cell-type-specific eQTL-hotspots. We applied this model to 36 tissues or cell types. Using augmented eQTL-hotspots, we recovered 655 402 eSNPs and reconstructed a comprehensive regulatory network of 2 725 380 cis-interactions among eQTL-hotspots. We further identified 52 012 modules representing transcriptional programs with unique functional backgrounds. In summary, our study provided a framework of epigenome-augmented eQTL analysis and thereby constructed comprehensive genome-wide networks of cis-regulations across diverse human tissues or cell types.


Asunto(s)
Epigenoma , Epigenómica , Humanos , Bases de Datos Factuales , Células Eucariotas , Aprendizaje Automático
11.
PLoS Pathog ; 20(1): e1011366, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190406

RESUMEN

C. elegans is a free-living nematode that is widely used as a small animal model for studying fundamental biological processes and disease mechanisms. Since the discovery of the Orsay virus in 2011, C. elegans also holds the promise of dissecting virus-host interaction networks and innate antiviral immunity pathways in an intact animal. Orsay virus primarily targets the worm intestine, causing enlarged intestinal lumen as well as visible changes to infected cells such as liquefaction of cytoplasm and convoluted apical border. Previous studies of Orsay virus identified that C. elegans is able to mount antiviral responses by DRH-1/RIG-I mediated RNA interference and Intracellular Pathogen Response, a uridylyltransferase that destabilizes viral RNAs by 3' end uridylation, and ubiquitin protein modifications and turnover. To comprehensively search for novel antiviral pathways in C. elegans, we performed genome-wide RNAi screens by bacterial feeding using existing bacterial RNAi libraries covering 94% of the entire genome. Out of the 106 potential antiviral gene hits identified, we investigated those in three new pathways: collagens, actin remodelers, and epigenetic regulators. By characterizing Orsay virus infection in RNAi and mutant worms, our results indicate that collagens likely form a physical barrier in intestine cells to inhibit viral infection by preventing Orsay virus entry. Furthermore, evidence suggests that actin remodeling proteins (unc-34, wve-1 and wsp-1) and chromatin remodelers (nurf-1 and isw-1) exert their antiviral activities by regulating the intestinal actin (act-5), a critical component of the terminal web which likely function as another physical barrier to prevent Orsay infection.


Asunto(s)
Proteínas de Caenorhabditis elegans , Virosis , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Actinas/metabolismo , Interferencia de ARN , Virosis/genética , Colágeno/genética , Colágeno/metabolismo , Interacciones Huésped-Patógeno , Proteínas del Tejido Nervioso/metabolismo
12.
Plant Cell ; 35(10): 3757-3781, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37437118

RESUMEN

The mechanical properties of guard cells have major effects on stomatal functioning. Reinforced stiffness in the stomatal polar regions was recently proposed to play an important role in stomatal function, but the underlying molecular mechanisms remain elusive. Here, we used genetic and biochemical approaches in poplar (Populus spp.) to show that the transcription factor MYB156 controls pectic homogalacturonan-based polar stiffening through the downregulation of the gene encoding pectin methylesterase 6 (PME6). Loss of MYB156 increased the polar stiffness of stomata, thereby enhancing stomatal dynamics and response speed to various stimuli. In contrast, overexpression of MYB156 resulted in decreased polar stiffness and impaired stomatal dynamics, accompanied by smaller leaves. Polar stiffening functions in guard cell dynamics in response to changing environmental conditions by maintaining normal stomatal morphology during stomatal movement. Our study revealed the structure-function relationship of the cell wall of guard cells in stomatal dynamics, providing an important means for improving the stomatal performance and drought tolerance of plants.


Asunto(s)
Estomas de Plantas , Populus , Estomas de Plantas/fisiología , Factores de Transcripción/genética , Populus/genética , Regulación de la Expresión Génica de las Plantas/genética , Pared Celular/fisiología
13.
Mol Cell ; 71(1): 142-154.e6, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30008318

RESUMEN

Nitric oxide (NO) regulates diverse cellular signaling through S-nitrosylation of specific Cys residues of target proteins. The intracellular level of S-nitrosoglutathione (GSNO), a major bioactive NO species, is regulated by GSNO reductase (GSNOR), a highly conserved master regulator of NO signaling. However, little is known about how the activity of GSNOR is regulated. Here, we show that S-nitrosylation induces selective autophagy of Arabidopsis GSNOR1 during hypoxia responses. S-nitrosylation of GSNOR1 at Cys-10 induces conformational changes, exposing its AUTOPHAGY-RELATED8 (ATG8)-interacting motif (AIM) accessible by autophagy machinery. Upon binding by ATG8, GSNOR1 is recruited into the autophagosome and degraded in an AIM-dependent manner. Physiologically, the S-nitrosylation-induced selective autophagy of GSNOR1 is relevant to hypoxia responses. Our discovery reveals a unique mechanism by which S-nitrosylation mediates selective autophagy of GSNOR1, thereby establishing a molecular link between NO signaling and autophagy.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Autofagia , Glutatión Reductasa/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Hipoxia de la Célula , Glutatión Reductasa/genética
14.
Nucleic Acids Res ; 52(D1): D552-D561, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37819028

RESUMEN

Single-cell proteomics (SCP) has emerged as a powerful tool for detecting cellular heterogeneity, offering unprecedented insights into biological mechanisms that are masked in bulk cell populations. With the rapid advancements in AI-based time trajectory analysis and cell subpopulation identification, there exists a pressing need for a database that not only provides SCP raw data but also explicitly describes experimental details and protein expression profiles. However, no such database has been available yet. In this study, a database, entitled 'SingPro', specializing in single-cell proteomics was thus developed. It was unique in (a) systematically providing the SCP raw data for both mass spectrometry-based and flow cytometry-based studies and (b) explicitly describing experimental detail for SCP study and expression profile of any studied protein. Anticipating a robust interest from the research community, this database is poised to become an invaluable repository for OMICs-based biomedical studies. Access to SingPro is unrestricted and does not mandate a login at: http://idrblab.org/singpro/.


Asunto(s)
Bases de Datos de Proteínas , Procesamiento Proteico-Postraduccional , Proteómica , Bases del Conocimiento , Espectrometría de Masas , Análisis de la Célula Individual
15.
Nucleic Acids Res ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39436046

RESUMEN

Chemoproteomic probes (CPPs) have been widely considered as powerful molecular biological tools that enable the highly efficient discovery of both binding proteins and modes of action for the studied compounds. They have been successfully used to validate targets and identify binders. The design of CPP has been considered extremely challenging, which asks for the generalization using a large number of probe data. However, none of the existing databases gives such valuable data of CPPs. Herein, a database entitled 'Chem(Pro)2' was therefore developed to systematically describe the atlas of diverse types of CPPs labelling human protein in living cell/lysate. With the booming application of chemoproteomic technique and artificial intelligence in current chemical biology study, Chem(Pro)2 was expected to facilitate the AI-based learning of interacting pattern among molecules for discovering innovative targets and new drugs. Till now, Chem(Pro)2 has been open to all users without any login requirement at: https://idrblab.org/chemprosquare/.

16.
Nucleic Acids Res ; 52(14): 8580-8594, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38989624

RESUMEN

The burgeoning crisis of antibiotic resistance has directed attention to bacteriophages as natural antibacterial agents capable of circumventing bacterial defenses. Central to this are the bacterial defense mechanisms, such as the BREX system, which utilizes the methyltransferase BrxX to protect against phage infection. This study presents the first in vitro characterization of BrxX from Escherichia coli, revealing its substrate-specific recognition and catalytic activity. We demonstrate that BrxX exhibits nonspecific DNA binding but selectively methylates adenine within specific motifs. Kinetic analysis indicates a potential regulation of BrxX by the concentration of its co-substrate, S-adenosylmethionine, and suggests a role for other BREX components in modulating BrxX activity. Furthermore, we elucidate the molecular mechanism by which the T7 phage protein Ocr (Overcoming classical restriction) inhibits BrxX. Despite low sequence homology between BrxX from different bacterial species, Ocr effectively suppresses BrxX's enzymatic activity through high-affinity binding. Cryo-electron microscopy and biophysical analyses reveal that Ocr, a DNA mimic, forms a stable complex with BrxX, highlighting a conserved interaction interface across diverse BrxX variants. Our findings provide insights into the strategic counteraction by phages against bacterial defense systems and offer a foundational understanding of the complex interplay between phages and their bacterial hosts, with implications for the development of phage therapy to combat antibiotic resistance.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteínas Virales , Escherichia coli/virología , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Virales/metabolismo , S-Adenosilmetionina/metabolismo , Unión Proteica , Bacteriófago T7/genética , Metiltransferasas/metabolismo , Cinética
17.
Nucleic Acids Res ; 52(D1): D1465-D1477, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37713619

RESUMEN

Target discovery is one of the essential steps in modern drug development, and the identification of promising targets is fundamental for developing first-in-class drug. A variety of methods have emerged for target assessment based on druggability analysis, which refers to the likelihood of a target being effectively modulated by drug-like agents. In the therapeutic target database (TTD), nine categories of established druggability characteristics were thus collected for 426 successful, 1014 clinical trial, 212 preclinical/patented, and 1479 literature-reported targets via systematic review. These characteristic categories were classified into three distinct perspectives: molecular interaction/regulation, human system profile and cell-based expression variation. With the rapid progression of technology and concerted effort in drug discovery, TTD and other databases were highly expected to facilitate the explorations of druggability characteristics for the discovery and validation of innovative drug target. TTD is now freely accessible at: https://idrblab.org/ttd/.


Asunto(s)
Bases de Datos Farmacéuticas , Humanos , Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas , Terapia Molecular Dirigida
18.
Nucleic Acids Res ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373488

RESUMEN

The subcellular compartment-specific molecular interactions (SCSIs) are the building blocks for most molecular functions, biological processes and disease pathogeneses. Extensive experiments have therefore been conducted to accumulate the valuable information of SCSIs, but none of the available databases has been constructed to describe those data. In this study, a novel knowledge base SubCELL is thus introduced to depict the landscape of SCSIs among DNAs/RNAs/proteins. This database is UNIQUE in (a) providing, for the first time, the experimentally-identified SCSIs, (b) systematically illustrating a large number of SCSIs inferred based on well-established method and (c) collecting experimentally-determined subcellular locations for the DNAs/RNAs/proteins of diverse species. Given the essential physiological/pathological role of SCSIs, the SubCELL is highly expected to have great implications for modern molecular biological study, which can be freely accessed with no login requirement at: https://idrblab.org/subcell/.

19.
Nucleic Acids Res ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373514

RESUMEN

Patient-derived models (PDMs, particularly organoids and xenografts) are irreplaceable tools for precision medicine, from target development to lead identification, then to preclinical evaluation, and finally to clinical decision-making. So far, PDM-based proteomics has emerged to be one of the cutting-edge directions and massive data have been accumulated. However, such PDM-based proteomic data have not been provided by any of the available databases, and proteomics profiles of all proteins in proteomic study are also completely absent from existing databases. Herein, an integrated database named 'OrgXenomics' was thus developed to provide the proteomic data for PDMs, which was unique in (a) explicitly describing the establishment detail for a wide array of models, (b) systematically providing the proteomic profiles (expression/function/interaction) for all proteins in studied proteomic analysis and (c) comprehensively giving the raw data for diverse organoid/xenograft-based proteomic studies of various diseases. Our OrgXenomics was expected to server as one good complement to existing proteomic databases, and had great implication for the practice of precision medicine, which could be accessed at: https://idrblab.org/orgxenomics/.

20.
Nucleic Acids Res ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373530

RESUMEN

The measurement of cell-based molecular bioactivity (CMB) is critical for almost every step of drug development. With the booming application of AI in biomedicine, it is essential to have the CMB data to promote the learning of cell-based patterns for guiding modern drug discovery, but no database providing such information has been constructed yet. In this study, we introduce MolBiC, a knowledge base designed to describe valuable data on molecular bioactivity measured within a cellular context. MolBiC features 550 093 experimentally validated CMBs, encompassing 321 086 molecules and 2666 targets across 988 cell lines. Our MolBiC database is unique in describing the valuable data of CMB, which meets the critical demands for CMB-based big data promoting the learning of cell-based molecular/pharmaceutical pattern in drug discovery and development. MolBiC is now freely accessible without any login requirement at: https://idrblab.org/MolBiC/.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda