Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; 20(36): e2400961, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38534173

RESUMEN

Functionalized nanochannels can convert environmental thermal energy into electrical energy by driving water evaporation. This process involves the interaction between the solid-liquid interface and the natural water evaporation. The evaporation-driven water potential effect is a novel green environmental energy capture technology that has a wide range of applications and does not depend on geographical location or environmental conditions, it can generate power as long as there is water, light, and heat. However, suitable materials and structures are needed to harness this natural process for power generation. MOF materials are an emerging field for water evaporation power generation, but there are still many challenges to overcome. This work uses MOF-801, which has high porosity, charged surface, and hydrophilicity, to enhance the output performance of evaporation-driven power generation. It can produce an open circuit voltage of ≈2.2 V and a short circuit current of ≈1.9 µA. This work has a simple structure, easy preparation, low-cost and readily available materials, and good stability. It can operate stably in natural environments with high practical value.

2.
J Control Release ; 372: 810-828, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968969

RESUMEN

Cancer is a serious threat to human health because of its high annual mortality rate. It has attracted significant attention in healthcare, and identifying effective strategies for the treatment and relief of cancer pain requires urgency. Drug delivery systems (DDSs) offer the advantages of excellent efficacy, low cost, and low toxicity for targeting drugs to tumor sites. In recent decades, copolymer carriers based on poly(phenylalanine) (PPhe) and poly(3,4-dihydroxy-L-phenylalanine) (PDopa) have been extensively investigated owing to their good biocompatibility, biodegradability, and controllable stimulus responsiveness, which have resulted in DDSs with loading and targeted delivery capabilities. In this review, we introduce the synthesis of PPhe and PDopa, highlighting the latest proposed synthetic routes and comparing the differences in drug delivery between PPhe and PDopa. Subsequently, we summarize the various applications of PPhe and PDopa in nanoscale-targeted DDSs, providing a comprehensive analysis of the drug release behavior based on different stimulus-responsive carriers using these two materials. In the end, we discuss the challenges and prospects of polypeptide-based DDSs in the field of cancer therapy, aiming to promote their further development to meet the growing demands for treatment.


Asunto(s)
Portadores de Fármacos , Humanos , Portadores de Fármacos/química , Animales , Sistemas de Liberación de Medicamentos , Péptidos/química , Péptidos/administración & dosificación , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Polímeros/química , Liberación de Fármacos , Fenilalanina/química , Fenilalanina/administración & dosificación , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Materiales Biocompatibles/química
3.
ACS Appl Mater Interfaces ; 16(4): 4763-4771, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38165822

RESUMEN

The advent of liquid-solid triboelectric nanogenerators (LS-TENGs) has ushered in a new era for harnessing and using energy derived from water. To date, extensive research has been conducted to enhance the output of LS-TENGs, thereby improving water utilization efficiency and facilitating their practical application. However, in contrast to intricate chemical treatment methods and specialized structures, a straightforward operational process and cost-effective materials are more conducive to the widespread adoption of LS-TENGs in practical applications. This work presents a novel method to enhance the output of LS-TENGs by increasing the liquid-solid contact area. The approach involves creating roughness on the solid surface through sandpaper grinding, which is simple in design and easy to operate and significantly reduces the cost of the experiment. The theory is applied to the solid triboelectric layer commonly used in the LS-TENG, demonstrating its universality and wide applicability to improve the output of the LS-TENG. The practical performance of the device is demonstrated by charging the capacitor and external load and driving the hygrometer and commercial 5 W LED light bulb, which can directly light up 300 commercial light-emitting diodes (LEDs) driven by a drop of water. This work provides a new method for the optimization of LS-TENGs and contributes to the wide application of LS-TENGs. This is a significant step forward in the field of energy harvesting and utilization.

4.
Pharmaceutics ; 15(2)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36839691

RESUMEN

Nanomedicine is a broad field that focuses on the development of nanocarriers to deliver specific drugs to targeted sites. A synthetic polypeptide is a kind of biomaterial composed of repeating amino acid units that are linked by peptide bonds. The multiplied amphiphilicity segment of the polypeptide could assemble to form polypeptide vesicles (PVs) under suitable conditions. Different from polypeptide vesicles, outer membrane vesicles (OMVs) are spherical buds of the outer membrane filled with periplasmic content, which commonly originate from Gram-negative bacteria. Owing to their biodegradability and excellent biocompatibility, both PVs and OMVs have been utilized as carriers in delivering drugs. In this review, we discuss the recent drug delivery research based on PVs and OMVs. These related topics are presented: (1) a brief introduction to the production methods for PVs and OMVs; (2) a thorough explanation of PV- and OMV-related applications in drug delivery including the vesicle design and biological assessment; (3) finally, we conclude with a discussion on perspectives and future challenges related to the drug delivery systems of PVs and OMVs.

5.
Adv Sci (Weinh) ; 10(31): e2304482, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37740700

RESUMEN

The research presented in this paper introduces a novel environmental energy-harvesting technology that harnesses electricity from the evaporation of water using porous structural materials. Specifically, a strategy employing paper-based hydroelectric generators (p-HEGs) is proposed to capture the energy produced during water evaporation and convert it into usable electricity. The p-HEGs offer several advantages, including simplicity in fabrication, low cost, and reusability. To evaluate their effectiveness, the water evaporation-induced electrical output performance of four different p-HEGs are compared. Among the variants tested, the p-HEG combining wood pulp and polyester fiber exhibits the best output performance. At room temperature, this particular p-HEG generates a short-circuit current and open-circuit voltage of ≈0.4 µA and 0.3 V, respectively, thereby demonstrating excellent electrical stability. Furthermore, the electrical current and voltage generated by the p-HEG through water evaporation are able to power an LED light, both individually and in series and parallel connections. This study delves into the potential of electricity harvesting from water evaporation and establishes it as a viable method for renewable energy applications.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda