Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Electrophoresis ; 45(13-14): 1243-1251, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38308502

RESUMEN

Active electric-driven droplet manipulation in digital microfluidics constitutes a promising domain owing to the unique and programmable wettability inherent in sessile ionic droplets. The coupling between the electric field and flow field enables precise control over wetting characteristics and droplet morphology. This study delves into the deformation phenomena of ionic sessile ferrofluid droplets in ambient air induced by uniform electric fields. Under the assumption of a pinned mode throughout the process, the deformation is characterized by variations in droplet height and contact angle in response to the applied electric field intensity. A numerical model is formulated to simulate the deformation dynamics of ferrofluid droplets, employing the phase field method for tracking droplet deformation. The fidelity of the numerical outcomes is assessed through the validation process, involving a comparison of droplet geometric deformations with corresponding experimental results. The impact of the electric field on the deformation of dielectric droplets is modulated by parameters such as electric field strength and droplet size. Through meticulously designed experiments, the substantial influence of both field strength and droplet size is empirically verified, elucidating the behavior of ionic sessile droplets. Considering the interplay of electric force, viscous force, and interfacial tension, the heightened field intensity is observed to effectively reduce the contact angle, augment droplet height, and intensify internal droplet flow. Under varying electric field conditions, droplets assume diverse shapes, presenting a versatile approach for microfluidic operations. The outcomes of this research hold significant guiding implications for microfluidic manipulation, droplet handling, and sensing applications.


Asunto(s)
Técnicas Analíticas Microfluídicas , Técnicas Analíticas Microfluídicas/instrumentación , Humectabilidad , Microfluídica/métodos , Microfluídica/instrumentación , Electricidad , Líquidos Iónicos/química , Modelos Teóricos
2.
Respir Res ; 25(1): 57, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38267973

RESUMEN

BACKGROUND: Lymphangioleiomyomatosis (LAM) is a rare disease which is easily misdiagnosed. Vascular endothelial growth factor D (VEGF-D), as the most common biomarker, however, is not so perfect for the diagnosis and severity assessment of LAM. MATERIALS AND METHODS: The isobaric tags for relative and absolute quantitation (iTRAQ)-based method was used to identify a cytoskeleton protein, moesin. 84 patients with LAM, 44 patients with other cystic lung diseases (OCLDs), and 37 healthy control subjects were recruited for collecting blood samples and clinical data. The levels of moesin in serum were evaluated by ELISA. The relationships of moesin with lymphatic involvement, lung function, and treatment decision were explored in patients with LAM. RESULTS: The candidate protein moesin was identified by the proteomics-based bioinformatic analysis. The serum levels of moesin were higher in patients with LAM [219.0 (118.7-260.5) pg/mL] than in patients with OCLDs (125.8 ± 59.9 pg/mL, P < 0.0001) and healthy women [49.6 (35.5-78.9) ng/mL, P < 0.0001]. Moesin had an area under the receiver operator characteristic curve (AUC) of 0.929 for predicting LAM diagnosis compared to healthy women (sensitivity 81.0%, specificity 94.6%). The combination of moesin and VEGF-D made a better prediction in differentiating LAM from OCLDs than moesin or VEGF-D alone. Moreover, elevated levels of moesin were related to lymphatic involvement in patients with LAM. Moesin was found negatively correlated with FEV1%pred, FEV1/FVC, and DLCO%pred (P = 0.0181, r = - 0.3398; P = 0.0067, r = - 0.3863; P = 0.0010, r = - 0.4744). A composite score combining moesin and VEGF-D improved prediction for sirolimus treatment, compared with each biomarker alone. CONCLUSION: Higher levels of moesin in serum may indicate impaired lung function and lymphatic involvement in patients with LAM, suggest a more serious condition, and provide clinical guidance for sirolimus treatment.


Asunto(s)
Linfangioleiomiomatosis , Proteínas de Microfilamentos , Humanos , Femenino , Linfangioleiomiomatosis/diagnóstico , Factor D de Crecimiento Endotelial Vascular , Biomarcadores , Sirolimus
3.
BMC Pulm Med ; 24(1): 76, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336682

RESUMEN

BACKGROUND: Severe asthma places a large burden on patients and society. The characteristics of patients with severe asthma in the Chinese population remain unclear. METHODS: A retrospective review was conducted in patients with severe asthma. Demographic and clinical data were collected. Patients were grouped according to phenotypes in terms of exacerbations, body mass index (BMI) and fixed airway obstruction (FAO) status, and the characteristics of different groups were compared. Comorbidities, factors that influence asthma phenotypes, were also analyzed in the study. RESULTS: A total of 228 patients with severe asthma were included in our study. They were more likely to be overweight or obese. A total of 41.7% of the patients received GINA step 5 therapy, and 43.4% had a history of receiving regular or intermittent oral corticosteroids (OCS). Severe asthmatic patients with comorbidities were prone to have more asthma symptoms and decreased quality of life than patients without comorbidities. Patients with exacerbations were characterized by longer duration of asthma, poorer lung function, and worse asthma control. Overweight or obese patients tended to have more asthma symptoms, poorer lung function and more asthma-related comorbidities. Compared to patients without FAO, those in the FAO group were older, with longer duration of asthma and more exacerbations. CONCLUSION: The existence of comorbidities in patients with severe asthma could result in more asthma symptoms and decreased quality of life. Patients with exacerbations or with overweight or obese phenotypes were characterized by poorer lung function and worse asthma control. Patients with FAO phenotype tended to have more exacerbations.


Asunto(s)
Obstrucción de las Vías Aéreas , Asma , Humanos , Sobrepeso/epidemiología , Calidad de Vida , Asma/tratamiento farmacológico , Obstrucción de las Vías Aéreas/epidemiología , Obesidad/epidemiología
4.
Cell Signal ; 113: 110964, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37956773

RESUMEN

BACKGROUND: The effect of fibroblast growth factor 10 (Fgf10) against allergic asthma has remained unclear, despite its importance in lung development and homeostasis maintenance. The purpose of this study was to investigate the protective effect and potential mechanism of Fgf10 on asthma. METHOD: House Dust Mite (HDM)-induced asthma mice were administered recombinant Fgf10 intranasally during activation. Flow cytometry and ELISA were performed to determine type of inflammatory cells and type 2 cytokines levels in bronchoalveolar lavage fluid (BALF). Hematoxylin and eosin (H&E) and periodic acid - Schiff (PAS) staining of lung sections were conducted to evaluate histopathological assessment. Transcriptome profiling was analyzed using RNA-seq, followed by bioinformatics and network analyses to investigate the potential mechanisms of Fgf10 in asthma. RT-qPCR was also used to search for and validate differentially expressed genes in human Peripheral Blood Mononuclear Cells (PBMCs). RESULTS: Exogenous administration of Fgf10 alleviated HDM-induced inflammation and mucus secretion in lung tissues of mice. Fgf10 also significantly inhibited the accumulation of eosinophils and type 2 cytokines (IL-4, IL-5, and IL-13) in BALF. The PI3K/AKT/NF-κB pathway may mediate the suppressive impact of Fgf10 on the asthma inflammation. Through RNA-seq analysis, the intersection of 71 differentially expressed genes (DEGs) was found between HDM challenge and Fgf10 treatment. GO and KEGG enrichment analyses indicated a strong correlation between the DEGs and different immune response. Immune infiltration analysis predicted the differential infiltration of five types of immune cells, such as NK cells, dendritic cells, monocytes and M1 macrophages. PPI analysis determined hub genes such as Irf7, Rsad2, Isg15 and Rtp4. Interestingly, above genes were consistently altered in human PBMCs in asthmatic patients. CONCLUSION: Asthma airway inflammation could be attenuated by Fgf10 in this study, suggesting that it could be a potential therapeutic target.


Asunto(s)
Asma , FN-kappa B , Animales , Humanos , Ratones , Asma/tratamiento farmacológico , Asma/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Factor 10 de Crecimiento de Fibroblastos/farmacología , Factor 10 de Crecimiento de Fibroblastos/uso terapéutico , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Inflamación/metabolismo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Pulmón/metabolismo , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
5.
J Hazard Mater ; 477: 135093, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39088948

RESUMEN

Exposure to particulate matter (PM) can cause airway inflammation and worsen various airway diseases. However, the underlying molecular mechanism by which PM triggers airway inflammation has not been completely elucidated, and effective interventions are lacking. Our study revealed that PM exposure increased the expression of histone deacetylase 9 (HDAC9) in human bronchial epithelial cells and mouse airway epithelium through the METTL3/m6A methylation/IGF2BP3 pathway. Functional assays showed that HDAC9 upregulation promoted PM-induced airway inflammation and activation of MAPK signaling pathway in vitro and in vivo. Mechanistically, HDAC9 modulated the deacetylation of histone 4 acetylation at K12 (H4K12) in the promoter region of dual specificity phosphatase 9 (DUSP9) to repress the expression of DUSP9 and resulting in the activation of MAPK signaling pathway, thereby promoting PM-induced airway inflammation. Additionally, HDAC9 bound to MEF2A to weaken its anti-inflammatory effect on PM-induced airway inflammation. Then, we developed a novel inhaled lipid nanoparticle system for delivering HDAC9 siRNA to the airway, offering an effective treatment for PM-induced airway inflammation. Collectively, we elucidated the crucial regulatory mechanism of HDAC9 in PM-induced airway inflammation and introduced an inhaled therapeutic approach targeting HDAC9. These findings contribute to alleviating the burden of various airway diseases caused by PM exposure.


Asunto(s)
Epigénesis Genética , Histona Desacetilasas , Material Particulado , Regulación hacia Arriba , Animales , Material Particulado/toxicidad , Humanos , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Epigénesis Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Ratones , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Inflamación , Nanopartículas/química , Nanopartículas/toxicidad , Ratones Endogámicos C57BL , Línea Celular , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Masculino
6.
Eur J Pharmacol ; 966: 176317, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38216081

RESUMEN

Oxidative stress and endoplasmic reticulum stress (ERS) was associated with the development of asthma. Edaravone (EDA) plays a classical role to prevent the occurrence and development of oxidative stress-related diseases. Herein, we investigated the involvement and signaling pathway of EDA in asthma, with particular emphasis on its impact on type 2 innate lymphoid cells (ILC2) and CD4+T cells, and then further elucidated whether EDA could inhibit house dust mite (HDM)-induced allergic asthma by affecting oxidative stress and ERS. Mice received intraperitoneally injection of EDA (10 mg/kg, 30 mg/kg), dexamethasone (DEX) and N-acetylcysteine (NAC), with the latter two used as positive control drugs. DEX and high dose of EDA showed better therapeutic effects in alleviating airway inflammation and mucus secretion in mice, along with decreasing eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF) than NAC. Further, the protein levels of IL-33 in lung tissues were inhibited by EDA, leading to reduced activation of ILC2s in the lung. EDA treatment alleviated the activation of CD4+ T cells in lung tissues of HDM-induced asthmatic mice and reduced Th2 cytokine secretion in BALF. ERS-related markers (p-eIF2α, IRE1α, CHOP, GRP78) were decreased after treatment of EDA compared to HDM group. Malondialdehyde (MDA), glutathione (GSH), hydrogen peroxide (H2O2), and superoxide dismutase (SOD) were detected to evaluate the oxidant stress in lung tissues. EDA showed a protective effect against oxidant stress. In conclusion, our findings demonstrated that EDA could suppress allergic airway inflammation by inhibiting oxidative stress and ERS, suggesting to serve as an adjunct medication for asthma in the future.


Asunto(s)
Asma , Inmunidad Innata , Ratones , Animales , Edaravona/farmacología , Edaravona/uso terapéutico , Citocinas/metabolismo , Endorribonucleasas/metabolismo , Peróxido de Hidrógeno/farmacología , Linfocitos , Proteínas Serina-Treonina Quinasas/metabolismo , Asma/metabolismo , Pulmón , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Estrés Oxidativo , Oxidantes/farmacología , Pyroglyphidae/metabolismo , Modelos Animales de Enfermedad
7.
Braz. j. med. biol. res ; 53(10): e9849, 2020. tab, graf
Artículo en Inglés | LILACS, Coleciona SUS (Brasil) | ID: biblio-1132481

RESUMEN

Testosterone has been demonstrated to antagonize doxorubicin-induced cardiomyocyte senescence. However, whether testosterone prevents the paraquat-induced cardiomyocyte senescence is largely unknown. The detection of SA-β-gal activity was performed using senescence β-gal staining kit and the reactive oxygen species levels were determined by reactive oxygen species assay kit. The plasmids for insulin-like growth factor 1 shRNA (sh-mIGF-1), sirtuin-1 shRNA (sh-SIRT1), scramble shRNA (sh-NC), overexpressing mIGF-1 (mIGF-1), overexpressing SIRT1 (SIRT1), and negative controls (NC) were obtained for this study. The expression of target genes was detected using quantitative real-time PCR, immunolabeling, and western blot. We found that testosterone significantly delayed the paraquat-induced HL-1 cardiomyocyte senescence as evidenced by decreasing senescence-associated β-galactosidase activity and reactive oxygen species generation, which were accompanied by the up-regulated expression of mIGF-1 and SIRT1. RNA interference to reduce mIGF-1 and SIRT1 expression showed that testosterone prevented paraquat-induced HL-1 senescence via the mIGF-1/SIRT1 signaling pathway. Furthermore, myocardial contraction was evaluated by expression of genes of the contractile proteins/enzymes, such as α-myosin heavy chain 6 (MHC6), α-myosin heavy chain 7 (MHC7), α-skeletal actin (ACTA-1), and sarco/endoplasmic reticulum calcium ATPase-2 (SERCA2). Testosterone adjusted the above four gene expressions and the adjustment was blocked by mIGF-1 or SIRT1 inhibition. Our findings suggested that the mIGF-1/SIRT1 signaling pathway mediated the protective function of testosterone against the HL-1 cardiomyocyte senescence by paraquat, which provided new clues for the mechanisms underlying the anti-aging role of testosterone in cardiomyocytes.


Asunto(s)
Paraquat/toxicidad , Testosterona/fisiología , Miocitos Cardíacos , Sirtuina 1 , Transducción de Señal , Células Cultivadas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda