RESUMEN
Down syndrome (DS) is a neurological disorder with multiple immune-related symptoms; however, crosstalk between the CNS and peripheral immune system remains unexplored. Using parabiosis and plasma infusion, we found that blood-borne factors drive synaptic deficits in DS. Proteomic analysis revealed elevation of ß2-microglobulin (B2M), a major histocompatibility complex class I (MHC-I) component, in human DS plasma. Systemic administration of B2M in wild-type mice led to synaptic and memory defects similar to those observed in DS mice. Moreover, genetic ablation of B2m or systemic administration of an anti-B2M antibody counteracts synaptic impairments in DS mice. Mechanistically, we demonstrate that B2M antagonizes NMDA receptor (NMDAR) function through interactions with the GluN1-S2 loop; blocking B2M-NMDAR interactions using competitive peptides restores NMDAR-dependent synaptic function. Our findings identify B2M as an endogenous NMDAR antagonist and reveal a pathophysiological role for circulating B2M in NMDAR dysfunction in DS and related cognitive disorders.
Asunto(s)
Síndrome de Down , Receptores de N-Metil-D-Aspartato , Microglobulina beta-2 , Animales , Humanos , Ratones , Microglobulina beta-2/metabolismo , Microglobulina beta-2/farmacología , Disfunción Cognitiva/metabolismo , Reacciones Cruzadas , Parabiosis , Proteómica , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Síndrome de Down/sangre , Síndrome de Down/metabolismoRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause acute respiratory disease and multiorgan failure. Finding human host factors that are essential for SARS-CoV-2 infection could facilitate the formulation of treatment strategies. Using a human kidney cell line-HK-2-that is highly susceptible to SARS-CoV-2, we performed a genome-wide RNAi screen and identified virus dependency factors (VDFs), which play regulatory roles in biological pathways linked to clinical manifestations of SARS-CoV-2 infection. We found a role for a secretory form of SARS-CoV-2 receptor, soluble angiotensin converting enzyme 2 (sACE2), in SARS-CoV-2 infection. Further investigation revealed that SARS-CoV-2 exploits receptor-mediated endocytosis through interaction between its spike with sACE2 or sACE2-vasopressin via AT1 or AVPR1B, respectively. Our identification of VDFs and the regulatory effect of sACE2 on SARS-CoV-2 infection shed insight into pathogenesis and cell entry mechanisms of SARS-CoV-2 as well as potential treatment strategies for COVID-19.
Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , Interacciones Microbiota-Huesped/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vasopresinas/inmunología , Internalización del Virus , COVID-19/inmunología , COVID-19/virología , Línea Celular , Humanos , Unión ProteicaRESUMEN
Interleukin-33 (IL-33), an epithelial cell-derived cytokine that responds rapidly to environmental insult, has a critical role in initiating airway inflammatory diseases. However, the molecular mechanism underlying IL-33 secretion following allergen exposure is not clear. Here, we found that two cell events were fundamental for IL-33 secretion after exposure to allergens. First, stress granule assembly activated by allergens licensed the nuclear-cytoplasmic transport of IL-33, but not the secretion of IL-33. Second, a neo-form murine amino-terminal p40 fragment gasdermin D (Gsdmd), whose generation was independent of inflammatory caspase-1 and caspase-11, dominated cytosolic secretion of IL-33 by forming pores in the cell membrane. Either the blockade of stress granule assembly or the abolishment of p40 production through amino acid mutation of residues 309-313 (ELRQQ) could efficiently prevent the release of IL-33 in murine epithelial cells. Our findings indicated that targeting stress granule disassembly and Gsdmd fragmentation could reduce IL-33-dependent allergic airway inflammation.
Asunto(s)
Alérgenos , Interleucina-33 , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animales , Caspasa 1/metabolismo , Inflamación , Interleucina-1beta/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Péptido Hidrolasas/metabolismo , Gránulos de EstrésRESUMEN
The increasing demands for more efficient and brighter thin-film light-emitting diodes (LEDs) in flat-panel display and solid-state lighting applications have promoted research into three-dimensional (3D) perovskites. These materials exhibit high charge mobilities and low quantum efficiency droop1-6, making them promising candidates for achieving efficient LEDs with enhanced brightness. To improve the efficiency of LEDs, it is crucial to minimize nonradiative recombination while promoting radiative recombination. Various passivation strategies have been used to reduce defect densities in 3D perovskite films, approaching levels close to those of single crystals3. However, the slow radiative (bimolecular) recombination has limited the photoluminescence quantum efficiencies (PLQEs) of 3D perovskites to less than 80% (refs. 1,3), resulting in external quantum efficiencies (EQEs) of LED devices of less than 25%. Here we present a dual-additive crystallization method that enables the formation of highly efficient 3D perovskites, achieving an exceptional PLQE of 96%. This approach promotes the formation of tetragonal FAPbI3 perovskite, known for its high exciton binding energy, which effectively accelerates the radiative recombination. As a result, we achieve perovskite LEDs with a record peak EQE of 32.0%, with the efficiency remaining greater than 30.0% even at a high current density of 100 mA cm-2. These findings provide valuable insights for advancing the development of high-efficiency and high-brightness perovskite LEDs.
RESUMEN
Fine particulate matter (PM2.5) is globally recognized for its adverse implications on human health. Yet, remain limited the individual contribution of particular PM2.5 components to its toxicity, especially considering regional disparities. Moreover, prevention solutions for PM2.5-associated health effects are scarce. In the present study, we comprehensively characterized and compared the primary PM2.5 constituents and their altered metabolites from two locations: Taiyuan and Guangzhou. Analysis of year-long PM2.5 samples revealed 84 major components, encompassing organic carbon, elemental carbon, ions, metals, and organic chemicals. PM2.5 from Taiyuan exhibited higher contamination, associated health risks, dithiothreitol activity, and cytotoxicities than Guangzhou's counterpart. Applying metabolomics, BEAS-2B lung cells exposed to PM2.5 from both cities were screened for significant alterations. A correlation analysis revealed the metabolites altered by PM2.5 and the critical toxic PM2.5 components in both regions. Among the PM2.5-down-regulated metabolites, phosphocholine emerged as a promising intervention for PM2.5 cytotoxicities. Its supplementation effectively attenuated PM2.5-induced energy metabolism disorder and cell death via activating fatty acid oxidation and inhibiting Phospho1 expression. The highlighted toxic chemicals displayed combined toxicities, potentially counteracted by phosphocholine. Our study offered a promising functional metabolite to alleviate PM2.5-induced cellular disorder and provided insights into the geo-based variability in toxic PM2.5 components.
Asunto(s)
Contaminantes Atmosféricos , Enfermedades Mitocondriales , Humanos , Contaminantes Atmosféricos/análisis , Fosforilcolina , Material Particulado/análisis , Pulmón , Carbono/análisis , Monitoreo del AmbienteRESUMEN
c-FLIP functions as a dual regulator of apoptosis and inflammation, yet its implications in Zika virus (ZIKV) infection remain partially understood, especially in the context of ZIKV-induced congenital Zika syndrome (CZS) where both apoptosis and inflammation play pivotal roles. Our findings demonstrate that c-FLIP promotes ZIKV infection in placental cells and myeloid-derived macrophages, involving inflammation and caspase-8/3-mediated apoptosis. Moreover, our observations reveal that c-FLIP augments ZIKV infection in multiple tissues, including blood cell, spleen, uterus, testis, and the brain of mice. Notably, the partial deficiency of c-FLIP provides protection to embryos against ZIKV-induced CZS, accompanied by a reduction in caspase-3-mediated apoptosis. Additionally, we have found a distinctive parental effect of c-FLIP influencing ZIKV replication in fetal heads. In summary, our study reveals the critical role of c-FLIP as a positive regulator in caspase-8/3-mediated apoptosis during ZIKV infection, significantly contributing to the development of CZS.
Asunto(s)
Apoptosis , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD , Caspasa 3 , Caspasa 8 , Infección por el Virus Zika , Virus Zika , Infección por el Virus Zika/virología , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/patología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Animales , Ratones , Caspasa 8/metabolismo , Femenino , Humanos , Caspasa 3/metabolismo , Embarazo , Placenta/virología , Placenta/metabolismo , Placenta/patología , Ratones Endogámicos C57BL , Replicación Viral , Ratones NoqueadosRESUMEN
S-Nitrosohemoglobin (SNO-Hb) is unique among vasodilators in coupling blood flow to tissue oxygen requirements, thus fulfilling an essential function of the microcirculation. However, this essential physiology has not been tested clinically. Reactive hyperemia following limb ischemia/occlusion is a standard clinical test of microcirculatory function, which has been ascribed to endothelial nitric oxide (NO). However, endothelial NO does not control blood flow governing tissue oxygenation, presenting a major quandary. Here we show in mice and humans that reactive hyperemic responses (i.e., reoxygenation rates following brief ischemia/occlusion) are in fact dependent on SNO-Hb. First, mice deficient in SNO-Hb (i.e., carrying C93A mutant Hb refractory to S-nitrosylation) showed blunted muscle reoxygenation rates and persistent limb ischemia during reactive hyperemia testing. Second, in a diverse group of humans-including healthy subjects and patients with various microcirculatory disorders-strong correlations were found between limb reoxygenation rates following occlusion and both arterial SNO-Hb levels (n = 25; P = 0.042) and SNO-Hb/total HbNO ratios (n = 25; P = 0.009). Secondary analyses showed that patients with peripheral artery disease had significantly reduced SNO-Hb levels and blunted limb reoxygenation rates compared with healthy controls (n = 8 to 11/group; P < 0.05). Low SNO-Hb levels were also observed in sickle cell disease, where occlusive hyperemic testing was deemed contraindicated. Altogether, our findings provide both genetic and clinical support for the role of red blood cells in a standard test of microvascular function. Our results also suggest that SNO-Hb is a biomarker and mediator of blood flow governing tissue oxygenation. Thus, increases in SNO-Hb may improve tissue oxygenation in patients with microcirculatory disorders.
Asunto(s)
Hiperemia , Humanos , Ratones , Animales , Microcirculación , Hemoglobinas/genética , Eritrocitos/fisiología , Oxígeno , Sujetos de Investigación , Óxido Nítrico/fisiologíaRESUMEN
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE: In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.
Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico , Interacciones Microbiota-Huesped , SARS-CoV-2 , Proteínas no Estructurales Virales , Replicación Viral , Humanos , Adenosina Trifosfatasas/metabolismo , Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , COVID-19/virología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/deficiencia , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , ADN Helicasas/metabolismo , Concentración 50 Inhibidora , ARN Helicasas/metabolismo , SARS-CoV-2/clasificación , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , SARS-CoV-2/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Femenino , Animales , RatonesRESUMEN
BACKGROUND AND AIMS: The common characteristics of alcohol-associated liver injury (ALI) include abnormal liver function, infiltration of inflammatory cells, and generation of oxidative stress. The gastrin-releasing peptide receptor (GRPR) is activated by its neuropeptide ligand, gastrin-releasing peptide (GRP). GRP/GRPR appears to induce the production of cytokines in immune cells and promotes neutrophil migration. However, the effects of GRP/GRPR in ALI are unknown. APPROACH AND RESULTS: We found high GRPR expression in the liver of patients with alcohol-associated steatohepatitis and increased pro-GRP levels in peripheral blood mononuclear cells of these patients compared with that of the control. Increased expression of GRP may be associated with histone H3 lysine 27 acetylation induced by alcohol, which promotes the expression of GRP and then GRPR binding. Grpr-/- and Grprflox/floxLysMCre mice alleviated ethanol-induced liver injury with relieved steatosis, lower serum alanine aminotransferase, aspartate aminotransferase, triglycerides, malondialdehyde, and superoxide dismutase levels, reduced neutrophil influx, and decreased expression and release of inflammatory cytokines and chemokines. Conversely, the overexpression of GRPR showed opposite effects. The pro-inflammatory and oxidative stress roles of GRPR might be dependent on IRF1-mediated Caspase-1 inflammasome and NOX2-dependent reactive oxygen species pathway, respectively. In addition, we verified the therapeutic and preventive effects of RH-1402, a novel GRPR antagonist, for ALI. CONCLUSIONS: A knockout or antagonist of GRPR during excess alcohol intake could have anti-inflammatory and antioxidative roles, as well as provide a platform for histone modification-based therapy for ALI.
Asunto(s)
Inflamasomas , Receptores de Bombesina , Humanos , Ratones , Animales , Receptores de Bombesina/metabolismo , Inflamasomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Caspasa 1/metabolismo , Leucocitos Mononucleares , Péptido Liberador de Gastrina/metabolismo , Etanol , Hígado/metabolismo , Citocinas/metabolismo , Factor 1 Regulador del Interferón/metabolismoRESUMEN
BACKGROUND AND AIMS: Stanford type A aortic dissection (AD) is a degenerative aortic remodelling disease marked by an exceedingly high mortality without effective pharmacologic therapies. Smooth muscle cells (SMCs) lining tunica media adopt a range of states, and their transformation from contractile to synthetic phenotypes fundamentally triggers AD. However, the underlying pathomechanisms governing this population shift and subsequent AD, particularly at distinct disease temporal stages, remain elusive. METHODS: Ascending aortas from nine patients undergoing ascending aorta replacement and five individuals undergoing heart transplantation were subjected to single-cell RNA sequencing. The pathogenic targets governing the phenotypic switch of SMCs were identified by trajectory inference, functional scoring, single-cell regulatory network inference and clustering, regulon, and interactome analyses and confirmed using human ascending aortas, primary SMCs, and a ß-aminopropionitrile monofumarate-induced AD model. RESULTS: The transcriptional profiles of 93 397 cells revealed a dynamic temporal-specific phenotypic transition and marked elevation of the activator protein-1 (AP-1) complex, actively enabling synthetic SMC expansion. Mechanistically, tumour necrosis factor signalling enhanced AP-1 transcriptional activity by dampening mitochondrial oxidative phosphorylation (OXPHOS). Targeting this axis with the OXPHOS enhancer coenzyme Q10 or AP-1-specific inhibitor T-5224 impedes phenotypic transition and aortic degeneration while improving survival by 42.88% (58.3%-83.3% for coenzyme Q10 treatment), 150.15% (33.3%-83.3% for 2-week T-5224), and 175.38% (33.3%-91.7% for 3-week T-5224) in the ß-aminopropionitrile monofumarate-induced AD model. CONCLUSIONS: This cross-sectional compendium of cellular atlas of human ascending aortas during AD progression provides previously unappreciated insights into a transcriptional programme permitting aortic degeneration, highlighting a translational proof of concept for an anti-remodelling intervention as an attractive strategy to manage temporal-specific AD by modulating the tumour necrosis factor-OXPHOS-AP-1 axis.
Asunto(s)
Enfermedades de la Aorta , Disección Aórtica , Benzofenonas , Isoxazoles , Enfermedades Vasculares , Humanos , Factor de Transcripción AP-1 , Aminopropionitrilo , Estudios Transversales , Disección Aórtica/genética , Enfermedades de la Aorta/patología , Enfermedades Vasculares/patología , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/fisiología , Factores de Necrosis TumoralRESUMEN
BACKGROUND: The brown planthopper (BPH) is a kind of piercing-sucking insect specific to rice, with the damage tops the list of pathogens and insects in recent years. microRNAs (miRNAs) are pivotal regulators of plant-environment interactions, while the mechanism underlying their function against insects is largely unknown. RESULTS: Here, we confirmed that OsmiR319, an ancient and conserved miRNA, negatively regulated resistance to BPHs, with overexpression of OsmiR319 susceptible to BPH, while suppression of OsmiR319 resistant to BPH in comparison with wild type. Meanwhile, we identified several targets of OsmiR319 that may mediate BPH resistance. Among them, OsPCF5 was the most obviously induced by BPH feeding, and over expression of OsPCF5 was resistance to BPH. In addition, various biochemical assays verified that OsPCF5 interacted with several MYB proteins, such as OsMYB22, OsMYB30, and OsMYB30C.Genetically, we revealed that both OsMYB22 and OsMYB30C positively regulated BPH resistance. Genetic interaction analyses confirmed that OsMYB22 and OsMYB30C both function in the same genetic pathway with OsmiR319b to mediate BPH resistance. CONCLUSIONS: Altogether, we revealed that OsPCF5 regulates BPH resistance via association with several MYB proteins downstream of OsmiR319, these MYB proteins might function as regulators of BPH resistance through regulating the phenylpropane synthesis.
Asunto(s)
Hemípteros , MicroARNs , Oryza , Animales , Oryza/fisiología , Hemípteros/genética , MicroARNs/genética , MicroARNs/metabolismoRESUMEN
A common issue with supported metal catalysts is the sintering of metal nanoparticles, resulting in catalyst deactivation. In this study, we propose a theoretical framework for realizing a real-time simulation of the reactivity of supported metal nanoparticles during the sintering process, combining density functional theory calculations, microkinetic modeling, Wulff-Kaichew construction, and sintering kinetic simulations. To validate our approach, we demonstrate its feasibility on α-Al2O3(0001)-supported Ag nanoparticles, where the simulated sintering behavior and ethylene epoxidation reaction rate as a function of time show qualitative agreement with experimental observation. Our proposed theoretical approach can be employed to screen out the promising microstructure feature of α-Al2O3 for stable supported Ag NPs, including the surface orientation and promoter species modified on it. The outlined approach of this work may be applied to a range of different thermocatalytic reactions other than ethylene epoxidation and provide guidance for the development of supported metal catalysts with long-term stability.
RESUMEN
Optical spatial differentiation is a typical operation of optical analog computing and can single out the edge to accelerate the subsequent image processing, but in some cases, overall information about the object needs to be presented synchronously. Here, we propose a multifunctional optical device based on structured chiral photonic crystals for the simultaneous realization of real-time dual-mode imaging. This optical differentiator is realized by self-organized large-birefringence cholesteric liquid crystals, which are photopatterned to encode with a special integrated geometric phase. Two highly spin-selective modes of second-order spatial differentiation and bright-field imaging are exhibited in the reflected and transmitted directions, respectively. Two-dimensional edges of both amplitude and phase objects have been efficiently enhanced in high contrast and the broadband spectrum. This work extends the ingenious building of hierarchical chiral nanostructures, enriches their applications in the emerging frontiers of optical computing, and boasts considerable potential in machine vision and microscopy.
RESUMEN
Radiotherapy has long been a main treatment option for nasopharyngeal carcinoma (NPC). However, during clinical treatment, NPC is prone to developing radioresistance, resulting in treatment failure. This study aims to examine the role of histone methylation in the induction of radioresistance. It was found that the radioresistance of NPC cells was related to the increase of the level of histone H3 lysine 27 trimethylation (H3K27me3). Treatment of cells with histone methyltransferase inhibitor GSK126 increased the radiosensitivity of NPC cells by triggering Bcl2 apoptosis regulator/BCL2-associated X, apoptosis regulator (Bcl2/BAX) signaling pathway. Bioinformatics analysis indicated that the expression of 2'-5'-oligoadenylate synthetase 1 (OAS1) was reduced in the radioresistant cells but increased in the GSK126-treated cells. Chromatin immunoprecipitation assay confirmed that the decrease of OAS1 expression in radioresistant cells was mainly due to the enrichment of H3K27me3 in its promoter region. Furthermore, downregulation of OAS1 reduced apoptosis due to the inhibition of Bcl2/BAX pathway after irradiation, while OAS1 overexpression increased radiosensitivity. Our findings revealed for the first time that the increase of H3K27me3 level was associated with the decrease of OAS1 expression, leading to the inhibition of apoptosis and ultimately contributing to the radioresistance of NPC cells. Moreover, the histone methyltransferase inhibitor GSK126 could overcome the radioresistance and thus might be a potential therapeutic strategy for NPC.NEW & NOTEWORTHY Our findings revealed for the first time that the increase of H3K27me3 level was associated with the decrease of OAS1 expression, leading to the inhibition of apoptosis and ultimately contributing to the radioresistance of NPC cells. Moreover, we demonstrated that the histone methyltransferase inhibitor GSK126 could be a promising therapeutic strategy for NPC by overcoming radioresistance, providing valuable insights into the clinical treatment of NPC.
Asunto(s)
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Histonas/genética , Histonas/metabolismo , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Histona Metiltransferasas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , 2',5'-Oligoadenilato Sintetasa/metabolismoRESUMEN
OBJECTIVE: International guidelines recommend maternal tenofovir disoproxil fumarate (TDF) therapy accompanied by infant immunoprophylaxis to prevent hepatitis B virus (HBV) mother-to-child transmission (MTCT) in highly viremic mothers. However, pooled analyses for tenofovir alafenamide (TAF) effects and comparisons between the 2 regimens are lacking. DESIGN: In this meta-analysis, pairs of independent reviewers performed multiple database searches from inception to 31 March 2024 and extracted data from cohort studies and randomized controlled trials (RCTs) in highly viremic mothers. The outcomes of interest were the reduction of MTCT and safety in the TDF-treated, TAF-treated, and control groups. RESULTS: We included 31 studies with 2588 highly viremic mothers receiving TDF, 280 receiving TAF, and 1600 receiving no treatment. Compared to the control, TDF therapy reduced the MTCT rate in infants aged 6-12 months (risk ratio: 0.10, 95% confidence interval [CI] .07-.16). Pairwise meta-analysis between TAF and TDF revealed similar effects on reducing MTCT (risk ratio: 1.09, 95% confidence interval .16-7.61). Network meta-analysis showed equal efficacy of the 2 regimens in reducing MTCT (risk ratio: 1.09, 95% CI .15-7.65). The surface under the cumulative ranking curve revealed TDF as the best regimen compared with TAF (probability ranking: .77 vs .72), while receiving a placebo during pregnancy had the lowest efficacy (probability ranking 0.01). There were no safety concerns for mothers and infants in all regimens. CONCLUSIONS: Compared to placebo or no treatment, maternal TDF and TAF prophylaxis are equally effective and without safety concerns in reducing MTCT in highly viremic mothers.
Asunto(s)
Antivirales , Hepatitis B Crónica , Transmisión Vertical de Enfermedad Infecciosa , Complicaciones Infecciosas del Embarazo , Tenofovir , Femenino , Humanos , Embarazo , Alanina/administración & dosificación , Alanina/efectos adversos , Antivirales/administración & dosificación , Antivirales/efectos adversos , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/prevención & control , Hepatitis B Crónica/transmisión , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Complicaciones Infecciosas del Embarazo/tratamiento farmacológico , Complicaciones Infecciosas del Embarazo/prevención & control , Recién Nacido , Tenofovir/administración & dosificación , Tenofovir/efectos adversos , Tenofovir/análogos & derivadosRESUMEN
Ophthalmic manifestations have recently been observed in acute and post-acute complications of COVID-19 caused by SARS-CoV-2 infection. Our precious study has shown that host RNA editing is linked to RNA viral infection, yet ocular adenosine to inosine (A-to-I) RNA editing during SARS-CoV-2 infection remains uninvestigated in COVID-19. Herein we used an epitranscriptomic pipeline to analyze 37 samples and investigate A-to-I editing associated with SARS-CoV-2 infection, in five ocular tissue types including the conjunctiva, limbus, cornea, sclera, and retinal organoids. Our results revealed dramatically altered A-to-I RNA editing across the five ocular tissues. Notably, the transcriptome-wide average level of RNA editing was increased in the cornea but generally decreased in the other four ocular tissues. Functional enrichment analysis showed that differential RNA editing (DRE) was mainly in genes related to ubiquitin-dependent protein catabolic process, transcriptional regulation, and RNA splicing. In addition to tissue-specific RNA editing found in each tissue, common RNA editing was observed across different tissues, especially in the innate antiviral immune gene MAVS and the E3 ubiquitin-protein ligase MDM2. Analysis in retinal organoids further revealed highly dynamic RNA editing alterations over time during SARS-CoV-2 infection. Our study thus suggested the potential role played by RNA editing in ophthalmic manifestations of COVID-19, and highlighted its potential transcriptome impact, especially on innate immunity.
Asunto(s)
COVID-19 , Edición de ARN , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/virología , SARS-CoV-2/genética , Adenosina/metabolismo , Inosina/metabolismo , Inosina/genética , Transcriptoma , Ojo/metabolismo , Ojo/virologíaRESUMEN
This study was conducted to compare the effectiveness of ceftriaxone with that of aqueous crystalline penicillin G in treating ocular syphilis. We conducted a retrospective study from 2010 to 2021. Syphilis patients were administered either ceftriaxone (2 g intravenously daily for 14 days) or aqueous crystalline penicillin G [4 million units (MU) intravenously every 4 h for 14 days] as therapeutic interventions. Subsequently, we utilized these two groups to assess the serological results, cerebrospinal fluid analysis, and visual acuity at time intervals spanning 3 to 6 months post-treatment. A total of 205 patients were included, with 34 assigned to the ceftriaxone group and 171 to the penicillin group. The median age of patients was 56 years, with an interquartile range of 49-62 years, and 137 of them (66.8%) were male. Between 3 and 6 months after treatment, 13 patients (38.2%) in the ceftriaxone group and 82 patients (48.0%) in the penicillin group demonstrated effective treatment based on the clinical and laboratory parameters. The crude odds ratio (OR) was 0.672 (95% confidence interval [CI]: 0.316-1.428, P = 0.301), indicating no significant difference in effectiveness between the two groups. Thirty patients (17.5%) in the penicillin group and six patients (17.6%) in the ceftriaxone group did not experience successful outcomes. Notably, no serious adverse effects were reported in both the groups. There was no significant difference in the effectiveness of ceftriaxone and aqueous crystalline penicillin G in treating ocular syphilis. The administration of ceftriaxone without requiring hospitalization presents a convenient and safe alternative treatment option for ocular syphilis.
RESUMEN
Multiple sclerosis (MS) is an inflammatory demyelination neurodegenerative disease of the central nervous system (CNS). Ferroptosis has been implicated in a range of brain disorders, and iron-loaded microglia are frequently found in affected brain regions. However, the molecular mechanisms linking ferroptosis with MS have not been well-defined. The present study seeks to bridge this gap and investigate the impact of matrine (MAT), a herbal medicine with immunomodulatory capacities, on the regulation of oxidative stress and ferroptosis in the CNS of mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. CNS of EAE mice contained elevated levels of ferroptosis-related molecules, e.g., MDA, LPCAT3 and PTGS2, but decreased expression of antioxidant molecules, including GSH and SOD, GPX4 and SLC7A11. This pathogenic process was reversed by MAT treatment, together with significant reduction of disease severity and CNS inflammatory demyelination. Furthermore, the expression of PTGS2 and LOX was largely increased in microglia of EAE mice, accompanied with increased production of IL-6 and TNF-α, indicating a proinflammatory phenotype of microglia that undergo oxidative stress/ferroptosis, and their expression was significantly reduced after MAT treatment. Together, our results indicate that ferroptosis/inflammation plays an important role in the pathogenesis of CNS autoimmunity, and inhibiting ferroptosis-induced microglial activation/inflammation could be a novel mechanism underlying the therapeutic effects of MAT on CNS inflammatory demyelination in EAE.