Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Chembiochem ; 23(9): e202200012, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35235240

RESUMEN

Small-molecule splicing modulators exemplified by an FDA-approved drug, risdiplam, are a new pharmacological modality for regulating the expression and stability of splice isoforms. We report a CRISPR-mediated enzyme fragment complementation (EFC) assay to quantify the splice isoform stability. The EFC assay harnessed a 42 amino acid split of a ß-galactosidase (designate α-tag), which could be fused at the termini of the target genes using CRISPR/cas9. The α-tagged splice isoform would be quantified by measuring the enzymatic activity upon complementation with the rest of ß-galactosidase. This EFC assay retained all the sequences of introns and exons of the target gene in the native genomic environment that recapitulates the cell biology of the diseases of interest. For a proof-of-concept, we developed a CRISPR-mediated EFC assay targeting the exon 7 of the survival of motor neuron 2 (SMN2) gene. The EFC assay is compatible with 384-well plates and robustly quantified the splicing modulation activity of small molecules. In this study, we also discovered that a coumarin derivative, compound 4, potently modulated SMN2 exon 7 splicing at as low as 1.1 nM.


Asunto(s)
Pruebas de Enzimas , Exones/genética , Mutación , Isoformas de Proteínas , beta-Galactosidasa
2.
Proc Natl Acad Sci U S A ; 114(13): 3497-3502, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28292893

RESUMEN

Stauprimide is a staurosporine analog that promotes embryonic stem cell (ESC) differentiation by inhibiting nuclear localization of the MYC transcription factor NME2, which in turn results in down-regulation of MYC transcription. Given the critical role the oncogene MYC plays in tumor initiation and maintenance, we explored the potential of stauprimide as an anticancer agent. Here we report that stauprimide suppresses MYC transcription in cancer cell lines derived from distinct tissues. Using renal cancer cells, we confirmed that stauprimide inhibits NME2 nuclear localization. Gene expression analysis also confirmed the selective down-regulation of MYC target genes by stauprimide. Consistent with this activity, administration of stauprimide inhibited tumor growth in rodent xenograft models. Our study provides a unique strategy for selectively targeting MYC transcription by pharmacological means as a potential treatment for MYC-dependent tumors.


Asunto(s)
Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogénicas c-myc/genética , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Animales , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones Endogámicos NOD , Ratones SCID , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo
3.
Annu Rev Pharmacol Toxicol ; 53: 107-25, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23294307

RESUMEN

There is considerable interest in the development of stem cell-based strategies for the treatment of a broad range of human diseases, including neurodegenerative, autoimmune, cardiovascular, and musculoskeletal diseases. To date, such regenerative approaches have focused largely on the development of cell transplantation therapies using cells derived from pluripotent embryonic stem cells (ESCs). Although there have been exciting preliminary reports describing the efficacy of ESC-derived replacement therapies, approaches involving ex vivo manipulated ESCs are hindered by issues of mutation, immune rejection, and ethical controversy. An alternative approach involves direct in vivo modulation or ex vivo expansion of endogenous adult stem cell populations using drug-like small molecules. Here we describe chemical approaches to the regulation of somatic stem cell biology that are yielding new biological insights and that may ultimately lead to innovative new medicines.


Asunto(s)
Células Madre Adultas/efectos de los fármacos , Células Madre Adultas/trasplante , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Trasplante de Células Madre/métodos , Animales , Humanos
4.
Dev Biol ; 395(2): 255-67, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25238962

RESUMEN

Limb development requires the coordinated growth of several tissues and structures including long bones, joints and tendons, but the underlying mechanisms are not wholly clear. Recently, we identified a small drug-like molecule - we named Kartogenin (KGN) - that greatly stimulates chondrogenesis in marrow-derived mesenchymal stem cells (MSCs) and enhances cartilage repair in mouse osteoarthritis (OA) models. To determine whether limb developmental processes are regulated by KGN, we tested its activity on committed preskeletal mesenchymal cells from mouse embryo limb buds and whole limb explants. KGN did stimulate cartilage nodule formation and more strikingly, boosted digit cartilaginous anlaga elongation, synovial joint formation and interzone compaction, tendon maturation as monitored by ScxGFP, and interdigit invagination. To identify mechanisms, we carried out gene expression analyses and found that several genes, including those encoding key signaling proteins, were up-regulated by KGN. Amongst highly up-regulated genes were those encoding hedgehog and TGFß superfamily members, particularly TFGß1. The former response was verified by increases in Gli1-LacZ activity and Gli1 mRNA expression. Exogenous TGFß1 stimulated cartilage nodule formation to levels similar to KGN, and KGN and TGFß1 both greatly enhanced expression of lubricin/Prg4 in articular superficial zone cells. KGN also strongly increased the cellular levels of phospho-Smads that mediate canonical TGFß and BMP signaling. Thus, limb development is potently and harmoniously stimulated by KGN. The growth effects of KGN appear to result from its ability to boost several key signaling pathways and in particular TGFß signaling, working in addition to and/or in concert with the filamin A/CBFß/RUNX1 pathway we identified previously to orchestrate overall limb development. KGN may thus represent a very powerful tool not only for OA therapy, but also limb regeneration and tissue repair strategies.


Asunto(s)
Anilidas/farmacología , Condrogénesis/efectos de los fármacos , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Cápsula Articular/embriología , Mesodermo/efectos de los fármacos , Ácidos Ftálicos/farmacología , Animales , Cartilla de ADN/genética , Procesamiento de Imagen Asistido por Computador , Immunoblotting , Hibridación in Situ , Cápsula Articular/efectos de los fármacos , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Luminiscentes/metabolismo , Ratones , Microscopía Confocal , Proteoglicanos/metabolismo , Regeneración/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Proteína con Dedos de Zinc GLI1 , Proteína Fluorescente Roja
5.
Angew Chem Int Ed Engl ; 53(37): 9841-5, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25056598

RESUMEN

Acute myeloid leukemia (AML), which is the most common acute adult leukemia and the second most common pediatric leukemia, still has a poor prognosis. Human C-type lectin-like molecule-1 (CLL1) is a recently identified myeloid lineage restricted cell surface marker, which is overexpressed in over 90% of AML patient myeloid blasts and in leukemic stem cells. Here, we describe the synthesis of a novel bispecific antibody, αCLL1-αCD3, using the genetically encoded unnatural amino acid, p-acetylphenylalanine. The resulting αCLL1-αCD3 recruits cytotoxic T cells to CLL1 positive cells, and demonstrates potent and selective cytotoxicity against several human AML cell lines and primary AML patient derived cells in vitro. Moreover, αCLL1-αCD3 treatment completely eliminates established tumors in an U937 AML cell line xenograft model. These results validate the clinical potential of CLL1 as an AML-specific antigen for the generation of a novel immunotherapeutic for AML.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Inmunoterapia/métodos , Lectinas Tipo C/inmunología , Leucemia Mieloide Aguda/inmunología , Adulto , Humanos
6.
Proc Natl Acad Sci U S A ; 107(38): 16542-7, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20823227

RESUMEN

Adult neurogenesis occurs in mammals and provides a mechanism for continuous neural plasticity in the brain. However, little is known about the molecular mechanisms regulating hippocampal neural progenitor cells (NPCs) and whether their fate can be pharmacologically modulated to improve neural plasticity and regeneration. Here, we report the characterization of a small molecule (KHS101) that selectively induces a neuronal differentiation phenotype. Mechanism of action studies revealed a link of KHS101 to cell cycle exit and specific binding to the TACC3 protein, whose knockdown in NPCs recapitulates the KHS101-induced phenotype. Upon systemic administration, KHS101 distributed to the brain and resulted in a significant increase in neuronal differentiation in vivo. Our findings indicate that KHS101 accelerates neuronal differentiation by interaction with TACC3 and may provide a basis for pharmacological intervention directed at endogenous NPCs.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Tiazoles/farmacología , Células Madre Adultas/citología , Células Madre Adultas/efectos de los fármacos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Hipocampo/citología , Masculino , Neuronas/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Tiazoles/química , Tiazoles/farmacocinética
7.
Proc Natl Acad Sci U S A ; 106(40): 17025-30, 2009 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-19805117

RESUMEN

Malignant melanoma is the most aggressive form of cutaneous carcinoma, accounting for 75% of all deaths caused by skin cancers. Microphthalmia-associated transcription factor (MITF) is a master gene regulating melanocyte development and functions as a "lineage addiction" oncogene in malignant melanoma. We have identified the receptor protein tyrosine kinase TYRO3 as an upstream regulator of MITF expression by a genome-wide gain-of-function cDNA screen and show that TYRO3 induces MITF-M expression in a SOX10-dependent manner in melanoma cells. Expression of TYRO3 is significantly elevated in human primary melanoma tissue samples and melanoma cell lines and correlates with MITF-M mRNA levels. TYRO3 overexpression bypasses BRAF(V600E)-induced senescence in primary melanocytes, inducing transformation of non-tumorigenic cell lines. Furthermore, TYRO3 knockdown represses cellular proliferation and colony formation in melanoma cells, and sensitizes them to chemotherapeutic agent-induced apoptosis; TYRO3 knockdown in melanoma cells also inhibits tumorigenesis in vivo. Taken together, these data indicate that TYRO3 may serve as a target for the development of therapeutic agents for melanoma.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Melanoma/patología , Factor de Transcripción Asociado a Microftalmía/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Desnudos , Factor de Transcripción Asociado a Microftalmía/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Biochim Biophys Acta ; 1803(2): 300-10, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19913059

RESUMEN

Ezrin/radixin/moesin (ERM) proteins are membrane-cytoskeleton linkers that also have roles in signal transduction. Here we show that G protein-coupled receptor kinase 2 (GRK2) regulates membrane protrusion and cell migration during wound closure in Madin-Darby canine kidney (MDCK) epithelial cell monolayers at least partly through activating phosphorylation of radixin on a conserved, regulatory C-terminal Thr residue. GRK2 phosphorylated radixin exclusively on Thr 564 in vitro. Expression of a phosphomimetic (Thr-564-to-Asp) mutant of radixin resulted in increased Rac1 activity, membrane protrusion and cell motility in MDCK cells, suggesting that radixin functions "upstream" of Rac1, presumably as a scaffolding protein. Phosphorylation of ERM proteins was highest during the most active phase of epithelial cell sheet migration over the course of wound closure. In view of these results, we explored the mode of action of quinocarmycin/quinocarcin analog DX-52-1, an inhibitor of cell migration and radixin function with considerable selectivity for radixin over the other ERM proteins, finding that its mechanism of inhibition of radixin does not appear to involve binding and antagonism at the site of regulatory phosphorylation.


Asunto(s)
Movimiento Celular/fisiología , Extensiones de la Superficie Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Células Epiteliales/citología , Células Epiteliales/fisiología , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Línea Celular , Proteínas del Citoesqueleto/genética , Perros , Células Epiteliales/efectos de los fármacos , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Silenciador del Gen , Isoquinolinas/farmacología , Proteínas de la Membrana/genética , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
9.
Angew Chem Int Ed Engl ; 50(1): 200-42, 2011 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-21184400

RESUMEN

Potential applications of stem cells in medicine range from their inclusion in disease modeling and drug discovery to cell transplantation and regenerative therapies. However, before this promise can be realized several obstacles must be overcome, including the control of stem cell differentiation, allogeneic rejection and limited cell availability. This will require an improved understanding of the mechanisms that govern stem cell potential and the development of robust methods to efficiently control their fate. Recently, a number of small molecules have been identified that can be used both in vitro and in vivo as tools to expand stem cells, direct their differentiation, or reprogram somatic cells to a more naive state. These molecules have provided a wealth of insights into the signaling and epigenetic mechanisms that regulate stem cell biology, and are already beginning to contribute to the development of effective treatments for tissue repair and regeneration.


Asunto(s)
Medicina Regenerativa/métodos , Investigación con Células Madre , Células Madre/fisiología , Ingeniería de Tejidos/métodos , Animales , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Humanos , Medicina Regenerativa/tendencias , Trasplante de Células Madre , Células Madre/citología , Ingeniería de Tejidos/tendencias
10.
J Cell Biochem ; 103(3): 972-85, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17668446

RESUMEN

Raf kinase inhibitor protein (RKIP) regulates a number of cellular processes, including cell migration. Exploring the role of RKIP in cell adhesion, we found that overexpression of RKIP in Madin-Darby canine kidney (MDCK) epithelial cells increases adhesion to the substratum, while decreasing adhesion of the cells to one another. The level of the adherens junction protein E-cadherin declines profoundly, and there is loss of normal localization of the tight junction protein ZO-1, while expression of the cell-substratum adhesion protein beta1 integrin dramatically increases. The cells also display increased adhesion and spreading on multiple substrata, including collagen, gelatin, fibronectin and laminin. In three-dimensional culture, RKIP overexpression leads to marked cell elongation and extension of long membrane protrusions into the surrounding matrix, and the cells do not form hollow cysts. RKIP-overexpressing cells generate considerably more contractile traction force than do control cells. In contrast, RNA interference-based silencing of RKIP expression results in decreased cell-substratum adhesion in both MDCK and MCF7 human breast adenocarcinoma cells. Treatment of MDCK and MCF7 cells with locostatin, a direct inhibitor of RKIP and cell migration, also reduces cell-substratum adhesion. Silencing of RKIP expression in MCF7 cells leads to a reduction in the rate of wound closure in a scratch-wound assay, although not as pronounced as that previously reported for RKIP-knockdown MDCK cells. These results suggest that RKIP has important roles in the regulation of cell adhesion, positively controlling cell-substratum adhesion while negatively controlling cell-cell adhesion, and underscore the complex functions of RKIP in cell physiology.


Asunto(s)
Uniones Adherentes/metabolismo , Uniones Célula-Matriz/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Quinasas raf/antagonistas & inhibidores , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cadherinas/metabolismo , Movimiento Celular/efectos de los fármacos , Uniones Célula-Matriz/efectos de los fármacos , Perros , Regulación hacia Abajo , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/química , Humanos , Integrina beta1/metabolismo , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Proteínas de la Membrana/metabolismo , Oxazolidinonas/farmacología , Proteínas de Unión a Fosfatidiletanolamina/farmacología , Fosfoproteínas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Células Tumorales Cultivadas , Regulación hacia Arriba , Cicatrización de Heridas/efectos de los fármacos , Proteína de la Zonula Occludens-1
11.
Sci Transl Med ; 10(454)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111643

RESUMEN

Pharmacological inhibition of uncontrolled cell growth with small-molecule inhibitors is a potential strategy for treating glioblastoma multiforme (GBM), the most malignant primary brain cancer. We showed that the synthetic small-molecule KHS101 promoted tumor cell death in diverse GBM cell models, independent of their tumor subtype, and without affecting the viability of noncancerous brain cell lines. KHS101 exerted cytotoxic effects by disrupting the mitochondrial chaperone heat shock protein family D member 1 (HSPD1). In GBM cells, KHS101 promoted aggregation of proteins regulating mitochondrial integrity and energy metabolism. Mitochondrial bioenergetic capacity and glycolytic activity were selectively impaired in KHS101-treated GBM cells. In two intracranial patient-derived xenograft tumor models in mice, systemic administration of KHS101 reduced tumor growth and increased survival without discernible side effects. These findings suggest that targeting of HSPD1-dependent metabolic pathways might be an effective strategy for treating GBM.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Metabolismo Energético , Glioblastoma/metabolismo , Glioblastoma/patología , Tiazoles/farmacología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chaperonina 60/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Glioblastoma/genética , Glucólisis/efectos de los fármacos , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Invasividad Neoplásica , Estrés Fisiológico/efectos de los fármacos , Análisis de Supervivencia , Transcripción Genética/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Chem Biol ; 13(9): 973-83, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16984887

RESUMEN

In the course of screening for new small-molecule modulators of cell motility, we discovered that quinocarmycin (also known as quinocarcin) analog DX-52-1 is an inhibitor of epithelial cell migration. While it has been assumed that the main target of DX-52-1 is DNA, we identified and confirmed radixin as the relevant molecular target of DX-52-1 in the cell. Radixin is a member of the ezrin/radixin/moesin family of membrane-actin cytoskeleton linker proteins that also participate in signal transduction pathways. DX-52-1 binds specifically and covalently to the C-terminal region of radixin, which contains the domain that interacts with actin filaments. Overexpression of radixin in cells abrogates their sensitivity to DX-52-1's antimigratory activity. Small interfering RNA-mediated silencing of radixin expression reduces the rate of cell migration. Finally, we found that DX-52-1 disrupts radixin's ability to interact with both actin and the cell adhesion molecule CD44.


Asunto(s)
Actinas/metabolismo , Movimiento Celular/efectos de los fármacos , Proteínas del Citoesqueleto/metabolismo , Receptores de Hialuranos/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Biotinilación , Línea Celular , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Perros , Células Epiteliales/citología , Humanos , Concentración 50 Inhibidora , Insectos , Isoquinolinas/síntesis química , Isoquinolinas/metabolismo , Isoquinolinas/farmacocinética , Isoquinolinas/farmacología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Unión Proteica/efectos de los fármacos , Interferencia de ARN , Transfección
13.
Chem Biol ; 12(9): 981-91, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16183022

RESUMEN

Raf kinase inhibitor protein (RKIP) is a modulator of cell signaling that functions as an endogenous inhibitor of multiple kinases. We demonstrate here a positive role for RKIP in the regulation of cell locomotion. We discovered that RKIP is the relevant cellular target of locostatin, a cell migration inhibitor. Locostatin abrogates RKIP's ability to bind and inhibit Raf-1 kinase, and it acts by disrupting a protein-protein interaction, an uncommon mode of action for a small molecule. Small interfering RNA-mediated silencing of RKIP expression also reduces cell migration rate. Overexpression of RKIP converts epithelial cells to a highly migratory fibroblast-like phenotype, with dramatic reduction in the sensitivity of cells to locostatin. RKIP is therefore the compound's valid target and a key regulator of cell motility.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Quinasas raf/antagonistas & inhibidores , Proteína de Unión a Andrógenos/genética , Proteína de Unión a Andrógenos/fisiología , Animales , Secuencia de Bases , Movimiento Celular , Células Cultivadas , Clonación Molecular , Cartilla de ADN , Perros
15.
Curr Top Med Chem ; 3(6): 593-616, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12570855

RESUMEN

Cell motility is a central feature of a range of normal and pathological processes, including embryonic development, tissue repair, immune cell function, angiogenesis, and cancer metastasis. The dynamics of the actin cytoskeleton power cell migration. A large number of proteins are known or suspected to play roles in regulating actin dynamics. While there are now many available small molecules that target the actin cytoskeleton directly, there is a paucity of specific inhibitors of actin-binding proteins and other immediate regulators of actin dynamics and cell movement. This makes the field of exceptional interest as a meeting place between the goals of chemical biology and the needs of cell biology. Furthermore, while regulators of the cell cycle have been recognized for some time as targets for anti-cancer drug development, controlling actin dynamics and cell motility as a therapeutic approach has received scant attention in comparison until recently. This review deals with small-molecule inhibitors of actin dynamics as they relate to cell shape change and motility, from compounds targeting actin directly to those targeting proteins involved in the fundamental control of the actin cytoskeleton.


Asunto(s)
Actinas/antagonistas & inhibidores , Movimiento Celular/efectos de los fármacos , Actinas/metabolismo , Animales , Tamaño de la Célula , Citoesqueleto/metabolismo , Proteínas de Unión al GTP/antagonistas & inhibidores , Proteínas de Unión al GTP/metabolismo , Humanos , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/metabolismo , Unión Proteica , Transducción de Señal
16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 24(11): 1342-4, 2004 Nov.
Artículo en Zh | MEDLINE | ID: mdl-15762471

RESUMEN

Tissues of cancerous and normal lungs were analysed directly and fast by Fourier transform infrared spectroscopy with OMNI-sampler. The result indicated that some remarkable spectral differences were among normal and cancerous lung tissues in frequency, intensity and shape of the absorption peaks. These facts indicated significant differences of content, structure and conformation of proteins, nucleic acids and lipids in different types of lung tissues. The present results suggested that Fourier transform infrared spectrometry (FTIR) could show the properties of normal and cancerous lung tissues at the molecular level. It was able to provide rich and reliable information for investigation of normal and cancerous lung tissues and could be used as a convenient and reliable diagnostic tool for some tumors.


Asunto(s)
Carcinoma Broncogénico/diagnóstico , Lípidos/química , Neoplasias Pulmonares/diagnóstico , Pulmón/química , Carcinoma Broncogénico/patología , Diagnóstico Diferencial , Humanos , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/química , Ácidos Nucleicos/química , Valores de Referencia , Espectroscopía Infrarroja por Transformada de Fourier/métodos
17.
Future Med Chem ; 6(14): 1567-85, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25367391

RESUMEN

Cancer stem cells (CSCs) have been identified in a growing list of malignancies and are believed to be responsible for cancer initiation, metastasis and relapse following certain therapies, even though they may only represent a small fraction of the cells in a given cancer. Like somatic stem cells and embryonic stem cells, CSCs are capable of self-renewal and differentiation into more mature, less tumorigenic cells that make up the bulk populations of cancer cells. Elimination of CSCs promises intriguing therapeutic potential and this concept has been adopted in preclinical drug discovery programs. Herein we will discuss the progress of these efforts, general considerations in practice, major challenges and possible solutions.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Descubrimiento de Drogas , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Descubrimiento de Drogas/métodos , Humanos , Terapia Molecular Dirigida/métodos , Neoplasias/metabolismo , Neoplasias/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
19.
Science ; 336(6082): 717-21, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22491093

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease that involves the destruction of articular cartilage and eventually leads to disability. Molecules that promote the selective differentiation of multipotent mesenchymal stem cells (MSCs) into chondrocytes may stimulate the repair of damaged cartilage. Using an image-based high-throughput screen, we identified the small molecule kartogenin, which promotes chondrocyte differentiation (median effective concentration = 100 nM), shows chondroprotective effects in vitro, and is efficacious in two OA animal models. Kartogenin binds filamin A, disrupts its interaction with the transcription factor core-binding factor ß subunit (CBFß), and induces chondrogenesis by regulating the CBFß-RUNX1 transcriptional program. This work provides new insights into the control of chondrogenesis that may ultimately lead to a stem cell-based therapy for osteoarthritis.


Asunto(s)
Anilidas/farmacología , Cartílago Articular/citología , Condrocitos/efectos de los fármacos , Condrogénesis , Células Madre Mesenquimatosas/efectos de los fármacos , Osteoartritis/tratamiento farmacológico , Ácidos Ftálicos/farmacología , Anilidas/administración & dosificación , Anilidas/química , Anilidas/uso terapéutico , Animales , Bovinos , Núcleo Celular/metabolismo , Condrocitos/citología , Condrocitos/metabolismo , Condrocitos/fisiología , Proteínas Contráctiles/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Modelos Animales de Enfermedad , Filaminas , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Ratones , Proteínas de Microfilamentos/metabolismo , Osteoartritis/patología , Osteoartritis/fisiopatología , Ácidos Ftálicos/administración & dosificación , Ácidos Ftálicos/química , Ácidos Ftálicos/uso terapéutico , Regeneración , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
20.
Future Med Chem ; 2(6): 965-73, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21426114

RESUMEN

Embryonic stem cells (ESCs) are a promising cell source for regenerative medicine and transplantation therapy.ESCs are able to self-renew indefinitely in culture; however, the ability to differentiate ESCs into specific cell lineages is key to exploiting their therapeutic potential. Cell-based phenotypic and reporter-based screens have been used to identify small molecules that selectively promote ESC differentiation into a variety of cell lineages. Not only will such molecules facilitate the clinical applications of stem cells, the detailed study of their mechanism is providing new insights into the biology that regulates ESC self-renewal and differentiation. In this article we discuss key issues, challenges and opportunities in the application of this chemical approach to stem cell biology.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Humanos , Medicina Regenerativa/tendencias
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda