RESUMEN
Pain-related aversive memory is common in chronic pain patients. Electroacupuncture has been demonstrated to block pain-related aversive memory. The insular cortex is a key region closely related to aversive behaviors. In our study, a potential mechanism underlying the effect of electroacupuncture treatment on pain-related aversive memory behaviors relative to the insular cortex was investigated. Our study used the chemogenetic method, pharmacological method, electroacupuncture intervention, and behavioral detection. Our study showed that both inhibition of gamma-aminobutyric acidergic neurons and activation of the kappa opioid receptor in the insular cortex blocked the pain-related aversive memory behaviors induced by 2 crossover injections of carrageenan in mice; conversely, both the activation of gamma-aminobutyric acidergic neurons and inhibition of kappa opioid receptor in the insular cortex play similar roles in inducing pain-related aversive memory behaviors following 2 crossover injections of carrageenan. In addition, activation of gamma-aminobutyric acidergic neurons in the insular cortex reversed the effect of kappa opioid receptor activation in the insular cortex. Moreover, electroacupuncture effectively blocked pain-related aversive memory behaviors in model mice, which was reversed by both activation of gamma-aminobutyric acidergic neurons and inhibition of kappa opioid receptor in the insular cortex. The effect of electroacupuncture on blocking pain-related aversive memory behaviors may be related to the activation of the kappa opioid receptor and inhibition of gamma-aminobutyric acidergic neurons in the insular cortex.
Asunto(s)
Dolor Crónico , Electroacupuntura , Ratones , Humanos , Animales , Receptores Opioides kappa/metabolismo , Corteza Insular , Carragenina/toxicidad , Neuronas GABAérgicas/fisiología , Ácido gamma-Aminobutírico/farmacología , Enfermedad Crónica , RecurrenciaRESUMEN
Pain aversion is an avoidance response to painful stimuli. Previous research has indicated that the anterior cingulate cortex (ACC) is involved in pain aversion processing. However, as interneurons, the role of GABAergic neurons in the ACC (GABAACC neurons) in pain aversion is still unclear. Electroacupuncture (EA) has been shown to ameliorate pain aversion, but the mechanism is not clarified. The present study provided evidence that inhibition of GABAACC neurons contributed to pain aversion. EA alleviated pain aversion by activating GABAACC neurons in an intensity-dependent manner. Specifically, 0.3 mA EA stimulation showed better effects on pain aversion than 0.1 mA stimulation, which could be reversed by chemical genetic inhibition of GABAACC neurons. These results provide a novel mechanism by which EA alleviates pain aversion by reversing GABAACC neurons.
Asunto(s)
Carragenina , Electroacupuntura , Neuronas GABAérgicas , Giro del Cíngulo , Dolor , Electroacupuntura/métodos , Neuronas GABAérgicas/metabolismo , Animales , Giro del Cíngulo/fisiopatología , Giro del Cíngulo/fisiología , Dolor/fisiopatología , Masculino , Ratones Endogámicos C57BL , Reacción de Prevención/fisiologíaRESUMEN
AIMS: Negative emotions induced by chronic pain are a serious clinical problem. Electroacupuncture (EA) is a clinically proven safe and effective method to manage pain-related negative emotions. However, the circuit mechanisms underlying the effect of EA treatment on negative emotions remain unclear. METHODS: Plantar injection of complete Freund's adjuvant (CFA) was performed to establish a rat model of chronic inflammatory pain-induced anxiety-like behaviors. Adeno-associated virus (AAV) tracing was used to identify excitatory synaptic transmission from the rostral anterior cingulate cortex (rACC) to the dorsal raphe nucleus (DRN). Employing chemogenetic approaches, we examined the role of the rACC-DRN circuit in chronic pain-induced anxiety-like behaviors and investigated whether EA could reverse chronic pain-induced dysfunctions of the rACC-DRN circuit and anxiety-like behaviors. RESULTS: We found that chemogenetic activation of the rACC-DRN circuit alleviated CFA-induced anxiety-like behaviors, while chemogenetic inhibition of the rACC-DRN circuit resulted in short-term CFA-induced anxiety-like behaviors. Further research revealed that the development of CFA-induced anxiety-like behaviors was attributed to the dysfunction of rACC CaMKII neurons projecting to DRN serotonergic neurons (rACCCaMKII-DRN5-HT neurons) but not rACC CaMKII neurons projecting to DRN GABAergic neurons (rACCCaMKII-DRNGABA neurons). This is supported by the findings that chemogenetic activation of the rACCCaMKII-DRN5-HT circuit alleviates anxiety-like behaviors in rats with chronic pain, whereas neither chemogenetic inhibition nor chemogenetic activation of the rACCCaMKII-DRNGABA circuit altered CFA chronic pain-evoked anxiety-like behaviors in rats. More importantly, we found that EA could reverse chronic pain-induced changes in the activity of rACC CaMKII neurons and DRN 5-HTergic neurons and that chemogenetic inhibition of the rACCCaMKII-DRN5-HT circuit blocked the therapeutic effects of EA on chronic pain-induced anxiety-like behaviors. CONCLUSIONS: Our data suggest that the reversal of rACCCaMKII-DRN5-HT circuit dysfunction may be a mechanism underlying the therapeutic effect of EA on chronic pain-induced anxiety-like behaviors.
Asunto(s)
Ansiolíticos , Dolor Crónico , Electroacupuntura , Ratas , Animales , Ansiolíticos/farmacología , Dolor Crónico/inducido químicamente , Dolor Crónico/terapia , Serotonina , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Ansiedad/tratamiento farmacológico , Neuronas Serotoninérgicas , Ácido gamma-Aminobutírico/farmacologíaRESUMEN
Chronic pain, such as neuropathic pain, can lead to anxiety, depression, and other negative emotions, thereby forming comorbidities and increasing the risk of chronic pain over time. Both the infralimbic amygdala (IL) and the basolateral amygdala (BLA) are significantly associated with negative emotions and pain, and they are known to have reciprocal connections. However, the role of IL-BLA circuit pathways in neuropathic pain-induced anxiety and depression remains unexplored. Electroacupuncture (EA) is frequently employed in the treatment of chronic pain and emotional disorders. However, The mechanism by which EA mediates its analgesic and emotion-alleviating effects via the IL-BLA circuit remains uncertain. Here, we used chemogenetic manipulation combined with behavioral tests to detect pain induced anxiety-like and depression-like behaviors. We observed that activation of the IL-BLA circuit by chemogenetic activation induced depression-like behavior of mice. Additionally, we discovered that chemogenetic activation of the IL-BLA circuit successfully prevented the beneficial effects of EA on depression-like behavior brought on by chronic pain in mice with spared nerve injury (SNI). We discovered that SNI-induced depression-like behavior could be mitigated by inhibiting the circuit, and EA had a comparable depressive-relieving effect. Furthermore, the IL-BLA circuit's activation or inhibition had no effect on the anxiety-like feelings brought on by SNI. Overall, our findings identify a specific neural circuit that selectively regulates pain-induced depression-like emotions, without affecting pain-induced anxiety-like emotions. This discovery offers a precise target for future treatments of comorbid pain and depression and provides a plausible explanation for the efficacy of EA in treating depression-like emotions associated with chronic pain.
RESUMEN
AIMS: Chronic pain is highly associated with anxiety. Electroacupuncture (EA) is effective in relieving pain and anxiety. Currently, little is known about the neural mechanisms underlying the comorbidity of chronic pain and anxiety and the EA mechanism. This study investigated a potential neural circuit underlying the comorbid and EA mechanisms. METHODS: Spared nerve injury (SNI) surgery established the chronic neuropathic pain mouse model. The neural circuit was activated or inhibited using the chemogenetic method to explore the relationship between the neural circuit and mechanical allodynia and anxiety-like behaviors. EA combined with the chemogenetic method was used to explore whether the effects of EA were related to this neural circuit. RESULTS: EA attenuated mechanical allodynia and anxiety-like behaviors in SNI mice, which may be associated with the activity of CaMKII neurons in the basolateral amygdala (BLA). Inhibition of BLACaMKII-rACC induced mechanical allodynia and anxiety-like behaviors in sham mice. Activation of the BLACaMKII-rACC alleviated neuropathic pain and anxiety-like behaviors in SNI mice. The analgesic and anxiolytic effects of 2 Hz EA were antagonized by the inhibition of the BLACaMKII-rACC. CONCLUSION: BLACaMKII-rACC mediates mechanical allodynia and anxiety-like behaviors. The analgesic and anxiolytic effects of 2 Hz EA may be associated with the BLACaMKII-rACC.
Asunto(s)
Ansiedad , Complejo Nuclear Basolateral , Electroacupuntura , Giro del Cíngulo , Hiperalgesia , Animales , Electroacupuntura/métodos , Hiperalgesia/terapia , Ansiedad/terapia , Ansiedad/psicología , Masculino , Ratones , Complejo Nuclear Basolateral/metabolismo , Ratones Endogámicos C57BL , Neuralgia/terapia , Neuralgia/psicología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Vías NerviosasRESUMEN
Comorbid chronic neuropathic pain and anxiety is a common disease that represents a major clinical challenge. The underlying mechanisms of chronic neuropathic pain and anxiety are not entirely understood, which limits the exploration of effective treatment methods. Glutamatergic neurons in the ventrolateral periaqueductal gray (vlPAG) have been implicated in regulating pain, but the potential roles of the vlPAG in neuropathic pain-induced anxiety have not been investigated. Herein, whole-cell recording and immunofluorescence showed that the excitability of CamkIIα neurons in the vlPAG (vlPAGCamkIIα+ neurons) was decreased in mice with spared nerve injury (SNI), while electroacupuncture (EA) activated these neurons. We also showed that chemogenetic inhibition of vlPAGCamkIIα+ neurons resulted in allodynia and anxiety-like behaviors in naive mice. Furthermore, chemogenetic activation of vlPAGCamkIIα+ neurons reduced anxiety-like behaviors and allodynia in mice with SNI, and EA had a similar effect in alleviating these symptoms. Nevertheless, EA combined with chemogenetic activation failed to further relieve allodynia and anxiety-like behaviors. Artificial inhibition of vlPAGCamkIIα+ neurons abolished the analgesic and anxiolytic effects of EA. Overall, our study reveals a novel mechanism of neuropathic pain-induced anxiety and shows that EA may relieve comorbid chronic neuropathic pain and anxiety by activating vlPAGCamkIIα+ neurons.
Asunto(s)
Ansiedad , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Electroacupuntura , Neuralgia , Neuronas , Sustancia Gris Periacueductal , Animales , Neuralgia/terapia , Electroacupuntura/métodos , Neuronas/fisiología , Neuronas/metabolismo , Masculino , Ansiedad/terapia , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Hiperalgesia/terapia , Dolor Crónico/terapia , Ácido Glutámico/metabolismo , Modelos Animales de Enfermedad , Conducta Animal/fisiologíaRESUMEN
AIMS: Epidemiological studies in patients with neuropathic pain have demonstrated a strong association between neuropathic pain and psychiatric conditions such as anxiety. Preclinical and clinical work has demonstrated that electroacupuncture (EA) effectively alleviates anxiety-like behaviors induced by chronic neuropathic pain. In this study, a potential neural circuitry underlying the therapeutic action of EA was investigated. METHODS: The effects of EA stimulation on mechanical allodynia and anxiety-like behaviors in animal models of spared nerve injury (SNI) were examined. EA plus chemogenetic manipulation of glutamatergic (Glu) neurons projecting from the rostral anterior cingulate cortex (rACCGlu ) to the dorsal raphe nucleus (DRN) was used to explore the changes of mechanical allodynia and anxiety-like behaviors in SNI mice. RESULTS: Electroacupuncture significantly alleviated both mechanical allodynia and anxiety-like behaviors with increased activities of glutamatergic neurons in the rACC and serotoninergic neurons in the DRN. Chemogenetic activation of the rACCGlu -DRN projections attenuated both mechanical allodynia and anxiety-like behaviors in mice at day 14 after SNI. Chemogenetic inhibition of the rACCGlu -DRN pathway did not induce mechanical allodynia and anxiety-like behaviors under physiological conditions, but inhibiting this pathway produced anxiety-like behaviors in mice at day 7 after SNI; this effect was reversed by EA. EA plus activation of the rACCGlu -DRN circuit did not produce a synergistic effect on mechanical allodynia and anxiety-like behaviors. The analgesic and anxiolytic effects of EA could be blocked by inhibiting the rACCGlu -DRN pathway. CONCLUSIONS: The role of rACCGlu -DRN circuit may be different during the progression of chronic neuropathic pain and these changes may be related to the serotoninergic neurons in the DRN. These findings describe a novel rACCGlu -DRN pathway through which EA exerts analgesic and anxiolytic effects in SNI mice exhibiting anxiety-like behaviors.
Asunto(s)
Ansiolíticos , Electroacupuntura , Neuralgia , Ratas , Humanos , Ratones , Animales , Hiperalgesia/terapia , Giro del Cíngulo , Núcleo Dorsal del Rafe/metabolismo , Ratas Sprague-Dawley , Neuralgia/terapia , Neuralgia/metabolismo , Analgésicos , Ansiedad/terapia , Modelos Animales de EnfermedadRESUMEN
Chronic pain, such as neuropathic pain, causes anxiety and other negative emotions, which aggravates the pain sensation and increases the risk of chronic pain over time. Dopamine receptor D1 (DRD1) and dopamine receptor D2 (DRD2) in the basolateral amygdala (BLA) have been implicated in mediating anxiety-related behaviors, but their potential roles in the BLA in neuropathic pain-induced anxiety have not been examined. Electroacupuncture (EA) is commonly used to treat chronic pain and emotional disorders, but it is still unclear whether EA plays a role in analgesia and anxiety relief through DRD1 and DRD2 in the BLA. Here, we used western blotting to examine the expression of DRD1 and DRD2 and pharmacological regulation combined with behavioral testing to detect anxiety-like behaviors. We observed that injection of the DRD1 antagonist SCH23390 or the DRD2 agonist quinpirole into the BLA contributed to anxiety-like behaviors in naive mice. EA also activated DRD1 or inhibited DRD2 in the BLA to alleviate anxiety-like behaviors. To further demonstrate the role of DRD1 and DRD2 in the BLA in spared nerve injury (SNI) model-induced anxiety-like behaviors, we injected the DRD1 agonist SKF38393 or the DRD2 antagonist sulpiride into the BLA. We found that both activation of DRD1 and inhibition of DRD2 could alleviate SNI-induced anxiety-like behaviors, and EA had a similar effect of alleviating anxiety. Additionally, neither DRD1 nor DRD2 in the BLA affected SNI-induced mechanical allodynia, but EA did. Overall, our work provides new insights into the mechanisms of neuropathic pain-induced anxiety and a possible explanation for the effect of EA treatment on anxiety caused by chronic pain.
Asunto(s)
Complejo Nuclear Basolateral , Dolor Crónico , Electroacupuntura , Neuralgia , Animales , Ansiedad/complicaciones , Ansiedad/terapia , Complejo Nuclear Basolateral/metabolismo , Dolor Crónico/terapia , Ratones , Neuralgia/metabolismo , Neuralgia/terapia , Receptores de Dopamina D1/metabolismoRESUMEN
Neuropathic pain is a common cause of chronic pain and is often accompanied by negative emotions, making it complex and difficult to treat. However, the neural circuit mechanisms underlying these symptoms remain unclear. Herein, we present a novel pathway associated with comorbid chronic pain and anxiety. Using chemogenetic methods, we found that activation of glutamatergic projections from the rostral anterior cingulate cortex (rACC Glu ) to the ventrolateral periaqueductal gray (vlPAG) induced both hyperalgesia and anxiety-like behaviors in sham mice. Inhibition of the rACC Glu -vlPAG pathway reduced anxiety-like behaviors and hyperalgesia in the spared nerve injury (SNI) mice model; moreover, electroacupuncture (EA) effectively alleviated these symptoms. Investigation of the related mechanisms revealed that the chemogenetic activation of the rACC Glu -vlPAG circuit effectively blocked the analgesic effect of EA in the SNI mice model but did not affect the chronic pain-induced negative emotions. This study revealed a novel pathway, the rACC Glu -vlPAG pathway, that mediates neuropathic pain and pain-induced anxiety.
RESUMEN
Anxiety is a common comorbidity associated with chronic pain, which results in chronic pain complexification and difficulty in treatment. Electroacupuncture (EA) is commonly used to treat chronic pain and anxiety. However, the underlying mechanisms of the EA effect are largely unknown. Here, we showed that a circuitry underlying chronic pain induces anxiety disorders, and EA can treat them by regulating such circuitry. Using chemogenetic methods, we found that chemogenetic activation of the rostral anterior cingulate cortex (rACC) glutamatergic output to the thalamus induced anxiety disorders in control rats. Then, chemogenetic inhibition of the rACC-thalamus circuitry reduced anxiety-like behavior produced by intraplantar injection of the complete Freund's adjuvant (CFA). In this study, we examined the effects of EA on a rat model of CFA-mediated anxiety-like behaviors and the related mechanisms. We found that chemogenetic activation of the rACC-thalamus circuitry effectively blocked the effects of EA on chronic pain-induced anxiety-like behaviors in CFA rats. These results demonstrate an underlying rACC-thalamus glutamatergic circuitry that regulates CFA-mediated anxiety-like behaviors. This study also provides a potential mechanistic explanation for EA treatment of anxiety caused by chronic pain.