Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Plant J ; 118(2): 373-387, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38159103

RESUMEN

Petals in rapeseed (Brassica napus) serve multiple functions, including protection of reproductive organs, nutrient acquisition, and attraction of pollinators. However, they also cluster densely at the top, forming a thick layer that absorbs and reflects a considerable amount of photosynthetically active radiation. Breeding genotypes with large, small, or even petal-less varieties, requires knowledge of primary genes for allelic selection and manipulation. However, our current understanding of petal-size regulation is limited, and the lack of markers and pre-breeding materials hinders targeted petal-size breeding. Here, we conducted a genome-wide association study on petal size using 295 diverse accessions. We identified 20 significant single nucleotide polymorphisms and 236 genes associated with petal-size variation. Through a cross-analysis of genomic and transcriptomic data, we focused on 14 specific genes, from which molecular markers for diverging petal-size features can be developed. Leveraging CRISPR-Cas9 technology, we successfully generated a quadruple mutant of Far-Red Elongated Hypocotyl 3 (q-bnfhy3), which exhibited smaller petals compared to the wild type. Our study provides insights into the genetic basis of petal-size regulation in rapeseed and offers abundant potential molecular markers for breeding. The q-bnfhy3 mutant unveiled a novel role of FHY3 orthologues in regulating petal size in addition to previously reported functions.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Estudio de Asociación del Genoma Completo , Sistemas CRISPR-Cas , Fitomejoramiento , Brassica rapa/genética , Mutagénesis
2.
Chem Soc Rev ; 53(12): 6399-6444, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38745455

RESUMEN

Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.


Asunto(s)
Inmunoterapia , Nanoestructuras , Metástasis de la Neoplasia , Neoplasias , Humanos , Nanoestructuras/química , Neoplasias/terapia , Neoplasias/patología , Neoplasias/diagnóstico por imagen , Neoplasias/inmunología , Animales , Microambiente Tumoral
3.
Soft Matter ; 20(19): 3987-3995, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38686608

RESUMEN

To elucidate the effect of aromatic side chains on dilational rheological properties of N-acyltaurate amphiphiles at the decane-water interface, the interfacial rheological properties of sodium N-2-(2-naphthoxy)-tetradecanoyltaurinate (12+N-T) and sodium N-2-(p-butylphenoxy)-tetradecanoyltaurinate (12+4B-T) were investigated utilizing the drop shape analysis method. The effects of adsorption time, interfacial pressure, oscillating frequency, and bulk concentration on the interfacial dilational modulus and phase angle were explored. The results show that the 12+4B-T molecule with a longer hydrophobic chain shows a higher ability for reducing the interfacial tension (IFT). In addition, the interfacial films of both 12+N-T and 12+4B-T are dominated by diffusion exchange at high concentrations. The rigidity of molecules controls the diffusion exchange at low concentrations, while the molecular hydrodynamic radius determines the diffusion exchange at high concentrations. Thus, at low concentrations, the stronger intermolecular interaction between 12+4B-T molecules results in higher dilational modulus values than 12+N-T. When approaching the CMC (critical micelle concentration) value, the rapid diffusion exchange of 12+4B-T between the sublayer micelles and the interface causes a significant decrease in the dilational modulus, while the relatively rigid structure of 12+N-T enables a higher dilational modulus than 12+4B-T. What's more, the longer hydrophobic chain allows 12+4B-T molecules to escape from the interface more easily, resulting in a higher phase angle at low concentrations. However, the diffusion exchange of 12+4B-T is slower than that of 12+N-T, which results in lower phase angles for 12+4B-T than 12+N-T at high concentrations. In general, the introduction of a rigid naphthalene ring in the molecular structure gives the interfacial film greater strength at high concentration. The research results in this paper provide a new technique for the strength regulation of interfacial surfactant adsorption films.

4.
Helicobacter ; 29(4): e13079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984661

RESUMEN

BACKGROUND: Eradicating Helicobacter pylori infection by bismuth quadruple therapy (BQT) is effective. However, the effect of BQT and subsequent fecal microbiota transplant (FMT) on the gut microbiota is less known. MATERIALS AND METHODS: This prospective randomized controlled trial was conducted at a tertiary hospital in China from January 2019 to October 2020, with the primary endpoints the effect of BQT on the gut microbiota and the effect of FMT on the gut microbiota after bismuth quadruple therapy eradication therapy. A 14-day BQT with amoxicillin and clarithromycin was administered to H. pylori-positive subjects, and after eradication therapy, patients received a one-time FMT or placebo treatment. We then collected stool samples to assess the effects of 14-day BQT and FMT on the gut microbiota. 16 s rDNA and metagenomic sequencing were used to analyze the structure and function of intestinal flora. We also used Gastrointestinal Symptom Rating Scale (GSRS) to evaluate gastrointestinal symptom during treatment. RESULTS: A total of 30 patients were recruited and 15 were assigned to either FMT or placebo groups. After eradication therapy, alpha-diversity was decreased in both groups. At the phylum level, the abundance of Bacteroidetes and Firmicutes decreased, while Proteobacteria increased. At the genus level, the abundance of beneficial bacteria decreased, while pathogenic bacteria increased. Eradication therapy reduced some resistance genes abundance while increased the resistance genes abundance linked to Escherichia coli. While they all returned to baseline by Week 10. Besides, the difference was observed in Week 10 by the diarrhea score between two groups. Compared to Week 2, the GSRS total score and diarrhea score decreased in Week 3 only in FMT group. CONCLUSIONS: The balance of intestinal flora in patients can be considerably impacted by BQT in the short term, but it has reverted back to baseline by Week 10. FMT can alleviate gastrointestinal symptoms even if there was no evidence it promoted restoration of intestinal flora.


Asunto(s)
Antibacterianos , Bismuto , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Infecciones por Helicobacter/terapia , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Trasplante de Microbiota Fecal/métodos , Masculino , Femenino , Persona de Mediana Edad , Helicobacter pylori/efectos de los fármacos , Adulto , Antibacterianos/uso terapéutico , Estudios Prospectivos , Bismuto/uso terapéutico , Quimioterapia Combinada , China , Amoxicilina/uso terapéutico , Claritromicina/uso terapéutico , Resultado del Tratamiento , Anciano , Heces/microbiología
5.
J Fish Dis ; : e14002, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075840

RESUMEN

Globally, streptococcal disease caused by Streptococcus agalactiae is known for its high mortality rate, which severely limits the development of the tilapia breeding industry. As a third-generation vaccine, DNA vaccines have shown great application prospects in the prevention and control of aquatic diseases, but their low immunogenicity limits their development. The combination of DNA vaccines and molecular adjuvants proved to be an effective method for inducing protective immunity. This study constructed recombinant plasmids encoding tilapia HSP70 and IL-1ß genes (pcHSP70 and pcIL-1ß) to verify their effectiveness as molecular adjuvants for S. agalactiae DNA vaccine (pcSIP) in the immunized tilapia model. The results revealed that serum-specific IgM production, enzyme activities, and immune-related gene expression in tilapia immunized with pcSIP plus pcHSP70 or pcIL-1ß were significantly higher than those in tilapia immunized with pcSIP alone. It is worth noting that combination with molecular adjuvants improved the immune protection of DNA vaccines, with a relative percentage survival (RPS) of 51.72% (pcSIP plus pcHSP70) and 44.83% (pcSIP plus pcIL-1ß), respectively, compared with that of pcSIP alone (24.14%). Thus, our study indicated that HSP70 and IL-1ß in tilapia are promising molecular adjuvants of the DNA vaccine in controlling S. agalactiae infection.

6.
Ecotoxicol Environ Saf ; 273: 116173, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452703

RESUMEN

Per- and polyfluoroalkyl (PFAS) substances are enduring industrial materials. 17ß-Hydroxysteroid dehydrogenase isoform 1 (17ß-HSD1) is an estrogen metabolizing enzyme, which transforms estrone into estradiol in human placenta and rat ovary. Whether PFAS inhibit 17ß-HSD1 and what the structure-activity relationship (SAR) remains unexplored. We screened 18 PFAS for inhibiting human and rat 17ß-HSD1 in microsomes and studied their SAR and mode of action(MOA). Of the 11 perfluorocarboxylic acids (PFCAs), C8-C14 PFCAs at a concentration of 100 µM substantially inhibited human 17ß-HSD1, with order of C11 (half-maximal inhibition concentration, IC50, 8.94 µM) > C10 (10.52 µM) > C12 (14.90 µM) > C13 (30.97 µM) > C9 (43.20 µM) > C14 (44.83 µM) > C8 (73.38 µM) > others. Of the 7 per- and poly-fluorosulfonic acids (PFSAs), the potency was C8S (IC50, 14.93 µM) > C7S (80.70 µM) > C6S (177.80 µM) > others. Of the PFCAs, C8-C14 PFCAs at 100 µM markedly reduced rat 17ß-HSD1 activity, with order of C11 (IC50, 9.11 µM) > C12 (14.30 µM) > C10 (18.24 µM) > C13 (25.61 µM) > C9 (67.96 µM) > C8 (204.39 µM) > others. Of the PFSAs, the potency was C8S (IC50, 37.19 µM) > C7S (49.38 µM) > others. In contrast to PFOS (C6S), the partially fluorinated compound 6:2 FTS with an equivalent number of carbon atoms demonstrated no inhibition of human and rat 17ß-HSD1 activity at a concentration of 100 µM. The inhibition of human and rat enzymes by PFAS followed a V-shaped trend from C4 to C14, with a nadir at C11. Moreover, human 17ß-HSD1 was more sensitive than rat enzyme. PFAS inhibited human and rat 17ß-HSD1 in a mixed mode. Docking analysis revealed that they bind to the NADPH and steroid binding site of both 17ß-HSD1 enzymes. The 3D quantitative SAR (3D-QSAR) showed that hydrophobic region, hydrogen bond acceptor and donor are key factors in binding to 17ß-HSD1 active sites. In conclusion, PFAS exhibit inhibitory effects on human and rat 17ß-HSD1 depending on factors such as carbon chain length, degree of fluorination, and the presence of carboxylic acid or sulfonic acid groups, with a notable V-shaped shift observed at C11.


Asunto(s)
Fluorocarburos , Relación Estructura-Actividad Cuantitativa , Embarazo , Femenino , Humanos , Animales , Ratas , Simulación del Acoplamiento Molecular , 17-Hidroxiesteroide Deshidrogenasas/química , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Estrona , Carbono , Fluorocarburos/toxicidad
7.
Ecotoxicol Environ Saf ; 277: 116391, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678792

RESUMEN

Prenatal exposure to diethylhexyl phthalate (DEHP) has been linked with a decline in testosterone levels in adult male rats, but the underlying mechanism remains unclear. We investigated the potential epigenetic regulation, particularly focusing on N6-methyladenosine (m6A) modification, as a possible mechanism. Dams were gavaged with DEHP (0, 10, 100, and 750 mg/kg/day) from gestational day 14 to day 21. The male offspring were examined at the age of 56 days. Prenatal DEHP administration at 750 mg/kg/day caused a decline in testosterone concentrations, an elevation in follicle-stimulating hormone, a downregulated expression of CYP11A1 HSD3B2, without affecting Leydig cell numbers. Interestingly, Methyltransferase Like 4 (METTL4), an m6A methyltransferase, was downregulated, while there were no changes in METTL3 and METTL14. Moreover, CYP11A1 showed m6A reduction in response to prenatal DEHP exposure. Additionally, METTL4 expression increased postnatally, peaking in adulthood. Knockdown of METTL4 resulted in the downregulation of CYP11A1 and HSD3B2 and an increase in SCARB1 expression. Furthermore, the increase in autophagy protection in adult Leydig cells induced by prenatal DEHP exposure was not affected by 3-methyladenosine (3MA) treatment, indicating a potential protective role of autophagy in response to DEHP exposure. In conclusion, prenatal DEHP exposure reduces testosterone by downregulating CYP11A1 and HSD3B2 via m6A epigenetic regulation and induction of autophagy protection in adult Leydig cells as a response to DEHP exposure.


Asunto(s)
Dietilhexil Ftalato , Regulación hacia Abajo , Epigénesis Genética , Células Intersticiales del Testículo , Metiltransferasas , Efectos Tardíos de la Exposición Prenatal , Testosterona , Animales , Femenino , Masculino , Embarazo , Ratas , Adenosina/análogos & derivados , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/análogos & derivados , Regulación hacia Abajo/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Células Intersticiales del Testículo/efectos de los fármacos , Metiltransferasas/genética , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas Sprague-Dawley , Testosterona/sangre
8.
Environ Toxicol ; 39(5): 2560-2571, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38189224

RESUMEN

Chlorinated bisphenol A (BPA) derivatives are formed during chlorination process of drinking water, whereas bisphenol S (BPS) and brominated BPA and BPS (TBBPA and TBBPS) were synthesized for many industrial uses such as fire retardants. However, the effect of halogenated BPA and BPS derivatives on glucocorticoid metabolizing enzyme 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) remains unclear. The inhibitory effects of 6 BPA derivatives in the inhibition of human and rat 11ß-HSD1 were investigated. The potencies for inhibition on human 11ß-HSD1 were TBBPA (IC50, 3.87 µM) = monochloro BPA (MCBPA, 4.08 µM) = trichloro BPA (TrCBPA, 4.41 µM) > tetrachloro BPA (TCBPA, 9.75 µM) > TBBPS (>100 µM) = BPS (>100 µM), and those for rat 11ß-HSD1 were TrCBPA (IC50, 2.76 µM) = MCBPA (3.75 µM) > TBBPA (39.58 µM) > TCBPA = TBBPS = BPS. All these BPA derivatives are mixed/competitive inhibitors of both human and rat enzymes. Molecular docking studies predict that MCBPA, TrCBPA, TCBPA, and TBBPA all bind to the active site of human 11ß-HSD1, forming hydrogen bonds with catalytic residue Ser170 except TCBPA. Regression of the lowest binding energy with IC50 values revealed a significant inverse linear regression. In conclusion, halogenated BPA derivatives are mostly potent inhibitors of human and rat 11ß-HSD1, and there is structure-dependent inhibition.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1 , Compuestos de Bencidrilo , Fenoles , Bifenilos Polibrominados , Humanos , Ratas , Animales , Simulación del Acoplamiento Molecular , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/química , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Relación Estructura-Actividad
9.
Angew Chem Int Ed Engl ; 63(10): e202318155, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38109458

RESUMEN

Real-time monitoring of hydroxyl radical (⋅OH) generation is crucial for both the efficacy and safety of chemodynamic therapy (CDT). Although ⋅OH probe-integrated CDT agents can track ⋅OH production by themselves, they often require complicated synthetic procedures and suffer from self-consumption of ⋅OH. Here, we report the facile fabrication of a self-monitored chemodynamic agent (denoted as Fc-CD-AuNCs) by incorporating ferrocene (Fc) into ß-cyclodextrin (CD)-functionalized gold nanoclusters (AuNCs) via host-guest molecular recognition. The water-soluble CD served not only as a capping agent to protect AuNCs but also as a macrocyclic host to encapsulate and solubilize hydrophobic Fc guest with high Fenton reactivity for in vivo CDT applications. Importantly, the encapsulated Fc inside CD possessed strong electron-donating ability to effectively quench the second near-infrared (NIR-II) fluorescence of AuNCs through photoinduced electron transfer. After internalization of Fc-CD-AuNCs by cancer cells, Fenton reaction between redox-active Fc quencher and endogenous hydrogen peroxide (H2 O2 ) caused Fc oxidation and subsequent NIR-II fluorescence recovery, which was accompanied by the formation of cytotoxic ⋅OH and therefore allowed Fc-CD-AuNCs to in situ self-report ⋅OH generation without undesired ⋅OH consumption. Such a NIR-II fluorescence-monitored CDT enabled the use of renal-clearable Fc-CD-AuNCs for efficient tumor growth inhibition with minimal side effects in vivo.


Asunto(s)
Compuestos Ferrosos , Nanopartículas , Neoplasias , Humanos , Nanomedicina , Metalocenos , Fluorescencia , Oxidación-Reducción , Línea Celular Tumoral , Peróxido de Hidrógeno/química , Nanopartículas/química , Microambiente Tumoral
10.
Angew Chem Int Ed Engl ; 63(16): e202319982, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361437

RESUMEN

Enzymes are considered safe and effective therapeutic tools for various diseases. With the increasing integration of biomedicine and nanotechnology, artificial nanozymes offer advanced controllability and functionality in medical design. However, several notable gaps, such as catalytic diversity, specificity and biosafety, still exist between nanozymes and their native counterparts. Here we report a non-metal single-selenium (Se)-atom nanozyme (SeSAE), which exhibits potent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mimetic activity. This novel single atom nanozyme provides a safe alternative to conventional metal-based catalysts and effectively cuts off the cellular energy and reduction equivalents through its distinctive catalytic function in tumors. In this study, we have demonstrated the substantial efficacy of SeSAE as an antitumor nanomedicine across diverse mouse models without discernible systemic adverse effects. The mechanism of the NADPH oxidase-like activity of the non-metal SeSAE was rationalized by density functional theory calculations. Furthermore, comprehensive elucidation of the biological functions, cell death pathways, and metabolic remodeling effects of the nanozyme was conducted, aiming to provide valuable insights into the development of single atom nanozymes with clinical translation potential.


Asunto(s)
Nanotecnología , Neoplasias , Animales , Ratones , Metales , Catálisis , Neoplasias/tratamiento farmacológico , Nanomedicina
11.
Sci Rep ; 14(1): 3510, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347091

RESUMEN

To address the phenomenon of many small and hard-to-detect objects in infrared and visible light images, we propose an object detection algorithm CDYL (Convolution to Fully Connect-ed-Deformable Convolution You only Look once) based on the CFC-DC (Convolution to Fully Connected-Deformable Convolution) module. The core operator of CDYL is CFC-DC, making our model not only have a large effective receptive field in infrared and visible light images, but also have adaptive spatial aggregation conditioned by input and task information. As a result, the CDYL reduces the strict inductive bias of traditional CNNs and has long-range dependence for large kernel convolution as well as adaptive spatial aggregation, deeply mining of edge and correlation information in images to enhance sensitivity to small objects, thereby improving performance in dense small object detection tasks. In order to improve the ability of the CFC-DC module to perceive the detailed information of the image, we use the Mish activation function, which has a wider minima which improves the generalization. The effectiveness as well as the generalization of CDYL is evaluated on an infrared image dataset and an UAV image dataset, and it is compared with other state-of-the-art object detection algorithms. Compared to the baseline network YOLOv8l, our model achieved a 3.0% improvement in mAP0.5 in infrared image detection tasks and a 1.1% improvement in mAP0.5 in visible light image detection tasks. The experimental results show that the proposed algorithm achieves superior average precision values on both infrared and visible light images, while maintaining a light weight. Code is publicly available at https://github.com/yangzhu1/CDYL .

12.
Mater Today Bio ; 27: 101144, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39070095

RESUMEN

Intratumor bacteria, which are involved with complex tumor development mechanisms, can compromise the therapeutic efficiencies of cancer chemotherapeutics. Therefore, the development of anti-tumor agents targeting intratumor bacteria is crucial in overcoming the drug inactivation induced by bacteria colonization. In this study, a double-bundle DNA tetrahedron-based nanocarrier is developed for intratumor bacteria-targeted berberine (Ber) delivery. The combination of aptamer modification and high drug loading efficacy endow the DNA nanocarrier TA@B with enhanced delivery performance in anti-tumor therapy without obvious systemic toxicity. The loaded natural isoquinoline alkaloid Ber exhibits enhanced antimicrobial, anticancer, and immune microenvironment regulation effects, ultimately leading to efficient inhibition of tumor proliferation. This intratumor bacteria-targeted DNA nanoplatform provides a promising strategy in intervening the bacteria-related microenvironment and facilitating tumor therapy.

13.
Regen Biomater ; 11: rbad103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38173776

RESUMEN

Metal ions participate in many metabolic processes in the human body, and their homeostasis is crucial for life. In cardiovascular diseases (CVDs), the equilibriums of metal ions are frequently interrupted, which are related to a variety of disturbances of physiological processes leading to abnormal cardiac functions. Exogenous supplement of metal ions has the potential to work as therapeutic strategies for the treatment of CVDs. Compared with other therapeutic drugs, metal ions possess broad availability, good stability and safety and diverse drug delivery strategies. The delivery strategies of metal ions are important to exert their therapeutic effects and reduce the potential toxic side effects for cardiovascular applications, which are also receiving increasing attention. Controllable local delivery strategies for metal ions based on various biomaterials are constantly being designed. In this review, we comprehensively summarized the positive roles of metal ions in the treatment of CVDs from three aspects: protecting cells from oxidative stress, inducing angiogenesis, and adjusting the functions of ion channels. In addition, we introduced the transferability of metal ions in vascular reconstruction and cardiac tissue repair, as well as the currently available engineered strategies for the precise delivery of metal ions, such as integrated with nanoparticles, hydrogels and scaffolds.

14.
Biodivers Data J ; 12: e125745, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38868393

RESUMEN

Background: The genus Heteropoda Latreille, 1804, is ranked as the second within the family Sparassidae Bertkau, 1872. Up to now, sixteen species of this genus have been described from Malaysia. New information: A new species of this genus in the highlands of Pahang State, Malaysia is described under the name of H.lebar sp. nov.. Individuals of the new species live in primary forests on forest floor, active in the night on the leaf litter.

15.
Bioact Mater ; 33: 460-482, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38076651

RESUMEN

Ischemic cardiomyopathy (ICM) affect millions of patients globally. Decellularized extracellular matrix materials (dECM) have components, microstructure and mechanical properties similar to healthy cardiac tissues, and can be manufactured into various forms of implantable biomaterials including injectable hydrogels or epicardial patches, which have been extensively reported to attenuate pathological left ventricular remodeling and maintain heart function. Recently, dECM medical devices for ICM treatment have been approved for clinical use or studied in clinical trials, exhibiting considerable translation potential. Cells, growth factors and other bioactive agents have been incorporated with different dECM materials to improve the therapeutic outcomes. In addition, more detailed aspects of the biological effects and mechanisms of dECM treatment are being revealed. This review summarized recent advances in dECM materials from variable sources for cardiac repair, including extraction of extracellular matrix, cell integration, smart manufacturing of injectable hydrogels and cardiac patch materials, and their therapeutic applications. Besides, this review provides an outlook on the cutting-edge development directions in the field.

16.
Zookeys ; 1202: 287-301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836192

RESUMEN

With 252 species, Pseudopoda Jäger, 2000, is the largest genus in the family Sparassidae and is widely distributed in South (49 species in Bhutan, India, Nepal and Pakistan), East (158 species in China and Japan) and Southeast Asia (51 species in Indonesia, Laos, Myanmar, Thailand and Vietnam). Few species have been found in more than one region. In this paper, three new species of Pseudopoda are described from East and Southeast Asia. Among them, one from China: P.fengtongzhaiensis Jäger & Liu, sp. nov. (♀); one from Laos: P.baimai Jäger & Liu, sp. nov. (♀); and one from Thailand: P.inthanonensis Jäger & Liu, sp. nov. (♀). Additionally, the female of P.kavanaughi Zhang, Jäger & Liu, 2023 is described for the first time. Photos of the habitus and genitalia, as well as a distribution map of all four species, are provided.

17.
Int J Biol Macromol ; 257(Pt 2): 128710, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101660

RESUMEN

α-Amylase activity differs between individuals and is influenced by dietary behavior and salivary constituents, but limited information is available on the relationship between α-amylase activity and saliva components. This study investigated the impact of salivary proteins on α-amylase activity, their various correlations, the effect of mucin (MUC5B and MUC7) and lactoferrin on the enzymatic kinetics of α-amylase, and the mechanisms of these interactions using the quartz crystal microbalance with dissipation (QCM-D) technique and molecular docking. The results showed that α-amylase activity was significantly correlated with the concentrations of MUC5B (R2 = 0.42, p < 0.05), MUC7 (R2 = 0.35, p < 0.05), and lactoferrin (R2 = 0.35, p < 0.05). An in vitro study demonstrated that α-amylase activity could be significantly increased by mucins and lactoferrin by decreasing the Michaelis constant (Km) of α-amylase. Moreover, the results from the QCM-D and molecule docking suggested that mucin and lactoferrin could interact with α-amylase to form stable α-amylase-mucin and α-amylase-lactoferrin complexes through hydrophobic interactions, electrostatic interactions, Van der Waals forces, and hydrogen bonds. In conclusion, these findings indicated that the salivary α-amylase activity depended not only on the α-amylase content, but also could be enhanced by the interactions of mucin/lactoferrin with α-amylase.


Asunto(s)
Mucinas , Saliva , Humanos , Mucinas/química , Saliva/química , Lactoferrina/metabolismo , Simulación del Acoplamiento Molecular , Tecnicas de Microbalanza del Cristal de Cuarzo , alfa-Amilasas/metabolismo
18.
Medicine (Baltimore) ; 103(11): e37513, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489728

RESUMEN

BACKGROUND: While papillary thyroid carcinoma (PTC) generally exhibits a favorable prognosis post-surgery, the poorly differentiated subtype presents elevated rates of postoperative recurrence. Certain aggressive cases demonstrate invasive behavior, compromising adjacent structures and leading to a poor prognosis. This study delineates a unique case of postoperative PTC recurrence, complicated by esophageal fistula, that showed favorable outcomes following brief Vemurafenib treatment. PATIENT DESCRIPTION: A 64-year-old female patient underwent surgical resection for PTC, subsequently experiencing rapid tumor recurrence and development of an esophageal fistula. DIAGNOSIS: The patient was confirmed to have locally advanced PTC through intraoperative cytopathology. The cancer recurred postoperatively, culminating in the formation of an esophageal fistula. METHODS: The patient was administered Vemurafenib at a dosage of 960 mg twice daily following tumor recurrence. RESULTS: A 12-month regimen of targeted Vemurafenib therapy led to a substantial reduction in tumor size. Concurrently, the esophageal fistula underwent complete healing, facilitating successful removal of the gastrostomy tube. The tumor response was classified as stable disease. CONCLUSION SUBSECTIONS: Vemurafenib demonstrates potential as a targeted therapeutic strategy for recurrent PTC harboring the BRAFV600E mutation. This approach may effectively mitigate tumor dimensions and the associated risk of esophageal and tracheal fistulas.


Asunto(s)
Carcinoma Papilar , Carcinoma , Fístula Esofágica , Neoplasias de la Tiroides , Femenino , Humanos , Persona de Mediana Edad , Cáncer Papilar Tiroideo , Vemurafenib/uso terapéutico , Neoplasias de la Tiroides/complicaciones , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/cirugía , Carcinoma/tratamiento farmacológico , Carcinoma/cirugía , Carcinoma/genética , Carcinoma Papilar/tratamiento farmacológico , Carcinoma Papilar/cirugía , Carcinoma Papilar/patología , Recurrencia Local de Neoplasia/patología , Pronóstico
19.
Nutrients ; 16(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38931256

RESUMEN

BACKGROUND AND AIMS: Type 2 diabetes (T2D) is a global and complex public health challenge, and dietary management is acknowledged as critical in its prevention. Recent studies have highlighted the involvement of micronutrients in T2D pathophysiology; our study aims to assess the association between B vitamin intake and T2D risks and the mediating role of inflammation. METHODS: In a prospective cohort design, data on B vitamins intake, including thiamine (B1), riboflavin (B2), niacin (B3), pyridoxine (B6), folate (B9), and cobalamin (B12), was obtained using a validated food frequency questionnaire (FFQ), and blood inflammatory biomarkers were analyzed according to standard protocol in the local hospitals at baseline from 44,960 adults in the Shanghai Suburban Adult Cohort and Biobank (SSACB). Incident T2D cases were identified according to a physician's diagnosis or medication records from the electronic medical information system. We employed logistic and weighted quantile sum regression models to explore the associations of single and combined levels of B vitamins with T2D and mediation analyses to investigate the effects of inflammation. RESULTS: Negative correlations between B vitamins and T2D were observed in the single-exposure models, except for B3. The analyses of joint exposure (B1, B2, B6, B9, and B12) also showed an inverse association (OR 0.80, 95% CI 0.71 to 0.88), with vitamin B6 accounting for 45.58% of the effects. Further mediation analysis indicated a mediating inflammatory impact, accounting for 6.72% of the relationship. CONCLUSIONS: Dietary intake of B vitamins (B1, B2, B6, B9, B12) was associated with a reduced T2D risk partially mediated by inflammation in Shanghai residents.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inflamación , Complejo Vitamínico B , Humanos , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/sangre , China/epidemiología , Femenino , Persona de Mediana Edad , Masculino , Inflamación/sangre , Estudios Prospectivos , Complejo Vitamínico B/administración & dosificación , Complejo Vitamínico B/sangre , Adulto , Factores de Riesgo , Biomarcadores/sangre , Anciano , Dieta/efectos adversos , Estudios de Cohortes
20.
Hortic Res ; 11(7): uhae139, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38988621

RESUMEN

Rapeseed is a globally significant oilseed crop cultivated to meet the increasing demand for vegetable oil. In order to enhance yield and sustainability, breeders have adopted the development of rapeseed hybrids as a common strategy. However, current hybrid production systems in rapeseed have various limitations, necessitating the development of a simpler and more efficient approach. In this study, we propose a novel method involving the targeted disruption of Defective in Anther Dehiscence1 of Brassica napus (BnDAD1), an essential gene in the jasmonic acid biosynthesis pathway, using CRISPR/Cas9 technology, to create male-sterile lines. BnDAD1 was found to be dominantly expressed in the stamen of rapeseed flower buds. Disrupting BnDAD1 led to decreased levels of α-linolenic acid and jasmonate in the double mutants, resulting in defects in anther dehiscence and pollen maturation. By crossing the double mutant male-sterile lines with male-fertile lines, a two-line system was demonstrated, enabling the production of F 1 seeds. The male-sterile trait of the bndad1 double mutant lines was maintainable by applying exogenous methyl jasmonate and subsequently self-pollinating the flowers. This breakthrough holds promising potential for harnessing heterosis in rapeseed and offers a simpler and more efficient method for producing hybrid seeds.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda