Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Environ Manage ; 367: 122025, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079489

RESUMEN

Urban surface temperatures are high in summertime, and thermal pollution caused by heat transfer from pavement to stormwater runoff is harmful to aquatic ecosystems. However, there is a lack of studies investigating the temperature change pattern during rainstorms and evaluating the effects of bioretention on dynamic characteristics of thermal pollution. Therefore, this study selected a 1.05 ha parking lot retrofitted with five individual bioretention cells in Beijing as the object to compare the temperature and volume of stormwater runoff before and after bioretention treatment. In the LID parking lot, the average EMT and EMXT (event maximum temperature) of runoff decreased by 2.28 °C and 4.18 °C, respectively, and the median percent thermal load reduction was 90.6%. Data analysis from 15 summer rainfall events showed that the sequence of factors affecting runoff EMT (event mean temperature) was average air temperature, max air temperature, max solar radiation, and rainfall peak 5-min intensity. Bioretention profoundly changed the thermal dynamic characteristics of stormwater runoff. Surface runoff temperatures generally showed a decreasing trend over time. The temperature change pattern of LID parking lot outflow was synchronized with that of the inflow and varied with different grades of precipitation. The probability of the peak temperature ahead of peak flow decreased from 80% to 53%, suggesting that 27% of the thermal first-flush effect of thermal pollution from the urban surface was alleviated by site-scale bioretention implementation. The site-scale bioretention combination had a lower effluent temperature and a higher thermal load reduction rate than single-scale solutions. These results fill the gap in research on the thermal pollution reduction process of bioretention. Furthermore, they can guide the optimization of bioretention design methods and strategies to protect urban water bodies from the stormwater runoff thermal pollution.


Asunto(s)
Lluvia , Temperatura , Movimientos del Agua
2.
Sci Total Environ ; 853: 158573, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36075423

RESUMEN

Metal-doped, activated carbon (AC) supported titanate nanotubes (Me/TNTs@AC) have been shown promising for photocatalytic degradation of per- and polyfluoroalkyl substances (PFAS). However, the preparation recipe of the adsorptive photocatalysts has not yet been optimized in terms of type and content of precursor ACs and the metal dopants as well as synthesizing conditions. In this work, the photocatalytic performance of Me/TNTs@AC was evaluated based on the effectiveness in defluorination of pre-sorbed perfluorooctane sulfonic acid (PFOS) after 4-h UV irradiation. Based on the experimental results, the highest photocatalytic mineralization efficiency (66.2 %) of PFOS was achieved using Ga/TNTs@AC prepared under the following conditions: Filtrosorb-400® = 50 wt%, Ga = 2 wt%, hydrothermal treatment temperature = 130 °C, hydrothermal duration = 72 h, and calcination temperature = 550 °C. To understand the underlying mechanisms, selected materials were characterized via X-ray diffraction, the BET surface area and pore volume, UV-vis diffuse reflectance spectrometry, and photoluminescence. The results revealed that the superior photoactivity of Ga/TNTs@AC is attributed to the Ga-facilitated formation of pure crystallized anatase phase during the calcination, high UV light absorption, formation of microscale hybrid AC-anatase-Ga phases, and oxygen defects induced by Ga3+. The information can facilitate preparation and optimization of composite photocatalysts for efficient adsorption and photocatalytic degradation of PFAS in water.


Asunto(s)
Fluorocarburos , Nanotubos , Agua/química , Carbón Orgánico , Catálisis , Titanio/química , Nanotubos/química , Oxígeno
3.
Water Res ; 220: 118650, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35640506

RESUMEN

GenX, the ammonium salt of hexafluoropropylene oxide dimer acid, has been used as a replacement for perfluorooctanoic acid. Due to its widespread uses, GenX has been detected in waters around the world amid growing concerns about its persistence and adverse health effects. As relevant regulations are rapidly evolving, new technologies are needed to cost-effectively remove and degrade GenX. In this study, we developed an adsorptive photocatalyst by depositing a small amount (3 wt.%) of bismuth (Bi) onto activated-carbon supported titanate nanotubes, Bi/TNTs@AC, and tested the material for adsorption and subsequent solid-phase photodegradation of GenX. Bi/TNTs@AC at 1 g/L was able to adsorb GenX (100 µg/L, pH 7.0) within 1 h, and then degrade 70.0% and mineralize 42.7% of pre-sorbed GenX under UV (254 nm) in 4 h. The efficient degradation also regenerated the material, allowing for repeated uses without chemical regeneration. Material characterizations revealed that the active components of Bi/TNTs@AC included activated carbon, anatase, and Bi nanoparticles with a metallic Bi core and an amorphous Bi2O3 shell. Electron paramagnetic resonance spin-trapping, UV-vis diffuse reflectance spectrometry, and photoluminescence analyses indicated the superior photoactivity of Bi/TNTs@AC was attributed to enhanced light harvesting and generation of charge carriers due to the UV-induced surface plasmon resonance effect, which was enabled by the metallic Bi nanoparticles. •OH radicals and photogenerated holes (h+) were responsible for degradation of GenX. Based on the analysis of degradation byproducts and density functional theory calculations, photocatalytic degradation of GenX started with cleavage of the carboxyl group and/or ether group by •OH, h+, and/or eaq-, and the resulting intermediates were transformed into shorter-chain fluorochemicals following the stepwise defluorination mechanism. Bi/TNTs@AC holds the potential for more cost-effective degradation of GenX and other per- and polyfluorinated alkyl substances.


Asunto(s)
Nanotubos , Agua , Adsorción , Bismuto/química , Carbón Orgánico , Nanotubos/química , Fotólisis
4.
Chemosphere ; 300: 134495, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35390412

RESUMEN

"Concentrate-and-degrade" is an effective strategy to promote mass transfer and degradation of pollutants in photocatalytic systems, yet suitable and cost-effective photocatalysts are required to practice the new concept. In this study, we doped a post-transition metal of Indium (In) on a novel composite adsorptive photocatalyst, activated carbon-supported titanate nanotubes (TNTs@AC), to effectively degrade perfluorooctanoic acid (PFOA). In/TNTs@AC exhibited both excellent PFOA adsorption (>99% in 30 min) and photodegradation (>99% in 4 h) under optimal conditions (25 °C, pH 7, 1 atm, 1 g/L catalyst, 0.1 mg/L PFOA, 254 nm). The heterojunction structure of the composite facilitated a cooperative adsorption mode of PFOA, i.e., binding of the carboxylic head group of PFOA to the metal oxide and attachment of the hydrophobic tail to AC. The resulting side-on adsorption mode facilitates the electron (e‒) transfer from the carboxylic head to the photogenerated hole (h+), which was the major oxidant verified by scavenger tests. Furthermore, the presence of In enables direct electron transfer and facilitates the subsequent stepwise defluorination. Finally, In/TNTs@AC was amenable to repeated uses in four consecutive adsorption-photodegradation runs. The findings showed that adsorptive photocatalysts can be prepared by hybridization of carbon and photoactive semiconductors and the enabled "concentrate-and-degrade" strategy is promising for the removal and degradation of trace levels of PFOA from polluted waters.


Asunto(s)
Fluorocarburos , Nanotubos de Carbono , Trinitrotolueno , Caprilatos/química , Fluorocarburos/química , Indio , Titanio/química
5.
Sci Total Environ ; 791: 148124, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34126481

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in landfill leachate due to their widespread applications in various industrial and consumer products. Yet, there has been no cost-effective technology available for treating PFAS in leachate because of the intrinsic persistency of PFAS and the high matrix strength of landfill leachate. We tested a two-step 'Concentrate-&-Destroy' technology for treating over 14 PFAS from a model landfill leachate through bench- and pilot-scale experiments. The technology was based on an adsorptive photocatalyst (Fe/TNTs@AC), which was able to selectively adsorb PFAS despite the strong matrix effect of the leachate. Moreover, the pre-concentrated PFAS on Fe/TNTs@AC were effectively degraded under UV, which also regenerates the material. The presence of 0.5 M H2O2 during the photocatalytic degradation enhanced the solid-phase destruction of the PFAS. Fresh Fe/TNTs@AC at a dosage of 10 g/L removed >95% of 13 PFAS from the leachate, 86% after first regeneration, and 74% when reused three times. Fe/TNTs@AC was less effective for PFBA and PFPeA partially due to the transformation of precursors and/or longer-chain homologues into these short-chain PFAS. Pilot-scale tests preliminarily confirmed the bench-scale results. Despite the strong interference from additional suspended solids, Fe/TNTs@AC removed >92% of 18 PFAS in 8 h under the field conditions, and when the PFAS-laden solids were subjected to the UV-H2O2 system, ~84% of 16 PFAS in the solid phase were degraded. The 'Concentrate-&-Destroy' strategy appears promising for more cost-effective removal and degradation of PFAS in landfill leachate or PFAS-laden high-strength wastewaters.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Peróxido de Hidrógeno , Tecnología , Aguas Residuales , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda