Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Biol Macromol ; : 136139, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357717

RESUMEN

The high water solubility and flammability of polyvinyl alcohol (PVA) limits its further widespread use in areas such as bioplastic and green packaging. In this study, double-crosslinked polyvinyl alcohol/starch bioplastics (named PDA) were fabricated using PVA, dialdehyde starch (DAS), and phytic acid (PA), resulting in a material with superior water resistance, flame retardancy, and excellent degradability. PA not only plays the role of catalyst for the chemical crosslinking but also as the physical crosslinker to form the intermolecular hydrogen bonds with PVA and DAS. This chemically and physically double cross-linked network structure results in PDA bioplastics with excellent toughness and water resistance. Specifically, the optimal formulation with 15 % PA content, designated as PDA15, exhibited a high toughness of 35.5 MJ/m3 and demonstrated prolonged shape retention in the boiling water. Additionally, PA also serves as a flame-retardant and antibacterial agent; the PDA15 achieved a high limit oxygen index (LOI) value of 40.0 % and passed the UL-94 V-0 rating without melt dripping, along with better degradability compared to pure PVA film. These outstanding performances make the PDA bioplastics highly promising for various applications, particularly in disposable plastics and laminated flexible packaging materials.

2.
IEEE Trans Image Process ; 32: 4501-4516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37540607

RESUMEN

Volumetric (3D) ultrasound imaging using a 2D matrix array probe is increasingly developed for various clinical procedures. However, 3D ultrasound imaging suffers from motion artifacts due to tissue motions and a relatively low frame rate. Current Doppler-based motion compensation (MoCo) methods only allow 1D compensation in the in-range dimension. In this work, we propose a new 3D-MoCo framework that combines 3D velocity field estimation and a two-step compensation strategy for 3D diverging wave compounding imaging. Specifically, our framework explores two constraints of a round-trip scan sequence of 3D diverging waves, i.e., Doppler and pair-wise optical flow, to formulate the estimation of the 3D velocity fields as a global optimization problem, which is further regularized by the divergence-free and first-order smoothness. The two-step compensation strategy is to first compensate for the 1D displacements in the in-range dimension and then the 2D displacements in the two mutually orthogonal cross-range dimensions. Systematical in-silico experiments were conducted to validate the effectiveness of our proposed 3D-MoCo method. The results demonstrate that our 3D-MoCo method achieves higher image contrast, higher structural similarity, and better speckle patterns than the corresponding 1D-MoCo method. Particularly, the 2D cross-range compensation is effective for fully recovering image quality.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda