RESUMEN
Seed priming increases germination, yield, and resistance to abiotic factors and phytopathogens. Chitosan is considered an ecofriendly growth stimulant and crop protection agent. Chitosan hydrolysate (CH) is an unfractionated product of hydrolysis of high-molecular-weight crab shell chitosan with a molecular weight of 1040 kDa and a degree of deacetylation of 85% with nitric acid. The average molecular weight of the main fraction in CH was 39 kDa. Lettuce seeds were soaked in 0.01-1 mg/mL CH for 6 h before sowing. The effects of CH on seed germination, plant morphology, and biochemical indicators at different growth stages were evaluated. Under the 0.1 mg/mL CH treatment, earlier seed germination was detected compared to the control. Increased root branching was observed, along with 100% and 67% increases in fresh weight (FW) at the 24th and 38th days after sowing (DAS), respectively. An increase in the shoot FW was found in CH-treated plants (33% and 4% at the 24th and 38th DAS, respectively). Significant increases in chlorophyll and carotenoid content compared to the control were observed at the 10th DAS. There were no significant differences in the activity of phenylalanine ammonia-lyase, polyphenol oxidase, ß-1,3-glucanase, and chitinase at the 24th and 38th DAS. Seed priming with CH could increase the yield and uniformity of plants within the group. This effect is important for commercial vegetable production.
Asunto(s)
Quitosano , Lactuca , Quitosano/farmacología , Germinación , Verduras , Semillas , PlantonesRESUMEN
Soybeans are a valuable food product, containing 40% protein and a large percentage of unsaturated fatty acids ranging from 17 to 23%. Pseudomonas savastanoi pv. glycinea (Psg) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff) are harmful bacterial pathogens of soybean. The bacterial resistance of soybean pathogens to existing pesticides and environmental concerns requires new approaches to control bacterial diseases. Chitosan is a biodegradable, biocompatible and low-toxicity biopolymer with antimicrobial activity that is promising for use in agriculture. In this work, a chitosan hydrolysate and its nanoparticles with copper were obtained and characterized. The antimicrobial activity of the samples against Psg and Cff was studied using the agar diffusion method, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The samples of chitosan and copper-loaded chitosan nanoparticles (Cu2+ChiNPs) significantly inhibited bacterial growth and were not phytotoxic at the concentrations of the MIC and MBC values. The protective properties of chitosan hydrolysate and copper-loaded chitosan nanoparticles against soybean bacterial diseases were tested on plants in an artificial infection. It was demonstrated that the Cu2+ChiNPs were the most effective against Psg and Cff. Treatment of pre-infected leaves and seeds demonstrated that the biological efficiencies of (Cu2+ChiNPs) were 71% and 51% for Psg and Cff, respectively. Copper-loaded chitosan nanoparticles are promising as an alternative treatment for bacterial blight and bacterial tan spot and wilt in soybean.
RESUMEN
Quaternary chitosan derivative with covalently bonded antioxidant (QCG) was used as media for synthesis of selenium nanoparticles (SeNPs). SeNPs were characterized using AFM, TEM, and DLS methods. The data confirmed the formation of stable nanoparticles with a positive charge (34.86-46.73 mV) and a size in the range 119.5-238.6 nm. The antibacterial and fungicidal activity of SeNPs occurred within the range of values for chitosan derivatives. In all cases, the highest activity was against C. albicans (MIC 125 µg/mL). The toxicity of the modified selenium nanoparticles to eukaryotic cells was significantly higher. Among nanoparticle samples, SeNPs that were synthesized at 55 °C demonstrated the highest toxicity against Colo357 and HaCaT cell lines. Based on these results, SeNPs loaded with doxorubicin were obtained. DOX loading efficiency was about 18%. QCG-SeNPs loaded with DOX at a concentration of 1.25 µg/mL inhibited more than 50% of hepatocarcinoma (Colo 357) cells and about 70% of keratinocytes (HaCaT).
RESUMEN
One of the important directions in the development of modern medical devices is the search and creation of new materials, both synthetic and natural, which can be more effective in their properties than previously used materials. Traditional materials such as metals, ceramics, and synthetic polymers used in medicine have certain drawbacks, such as insufficient biocompatibility and the emergence of an immune response from the body. Natural biopolymers have found applications in various fields of biology and medicine because they demonstrate a wide range of biological activity, biodegradability, and accessibility. This review first described the properties of the two most promising biopolymers belonging to the classes of polyhydroxyalkanoates and polysaccharides-polyhydroxybutyrate and chitosan. However, homopolymers also have some disadvantages, overcome which becomes possible by creating polymer composites. The article presents the existing methods of creating a composite of two polymers: copolymerization, electrospinning, and different ways of mixing, with a description of the properties of the resulting compositions. The development of polymer composites is a promising field of material sciences, which allows, based on the combination of existing substances, to develop of materials with significantly improved properties or to modify of the properties of each of their constituent components.
RESUMEN
Microorganisms are one of the main factors in the deterioration of cultural heritage, in particular art paintings. The antiseptics currently used in painting have significant limitations due to insufficient effectiveness or increased toxicity and interaction with art materials. In this regard, the actual challenge is the search for novel materials that effectively work against microorganisms in the composition with painting materials and do not change their properties. Chitosan has pronounced antimicrobial properties but was not used previously as an antiseptic for paintings. In our study we developed a number of mock layers based on sturgeon glue, supplemented which chitosan (molecular weight 25 kDa or 45 kDa), standard antiseptics for paintings (positive controls) or without additives (negative control). According to Fourier transform infrared spectroscopy and atomic force microscopy, the addition of chitosan did not significantly affect the optical and surface properties of this material. The ability of chitosan to effectively protect paintings was shown after inoculation on the created mock-up layers of 10 fungi-destructors of tempera painting, previously isolated from cultural heritage of the of the 15-16th centuries in the State Tretyakov Gallery, on the created mock layers. Our study demonstrated the principled opportunity of using chitosan in the composition of painting materials to prevent biodeterioration for the first time.
RESUMEN
Diabetes mellitus continues to be one of the most common diseases often associated with diabetic ulcers. Chitosan is an attractive biopolymer for wound healing due to its biodegradability, biocompatibility, mucoadhesiveness, low toxicity, and hemostatic effect. A panel of hydrogels based on chitosan, collagen, and silver nanoparticels were produced to treat diabetic wounds. The antibacterial activity, cytotoxicity, swelling, rheological properties, and longitudinal sections of hydrogels were studied. The ability of the gels for wound healing was studied in CD1 mice with alloxan-induced diabetes. Application of the gels resulted in an increase in VEGF, TGF-b1, IL-1b, and TIMP1 gene expression and earlier wound closure in a comparison with control untreated wounds. All gels increased collagen deposition, hair follicle repair, and sebaceous glands formation. The results of these tests show that the obtained hydrogels have good mechanical properties and biological activity and have potential applications in the field of wound healing. However, clinical studies are required to compare the efficacy of the gels as animal models do not reproduce full diabetes pathology.
RESUMEN
In presented study, various chitosan derivatives containing covalently bounded gallic acid were obtained: chitosan with gallic acid (CG), quaternized chitosan with gallic acid (QCG), and succinylated chitosan with gallic acid (SCG). Chitosan derivatives were used as stabilizing and reducing agents in the synthesis of silver nanoparticles (AgNPs). The dimensional characteristics of nanomaterials were determined by transmission electron (TEM), dynamic light scattering (DLS) and atomic force (AFM) microscopy, antibacterial activity (against E. coli, S. epidermidis), cytotoxicity (HaCaT, Colo 357 cell lines) and hemocompatibility. Among all samples, QCG-AgNPs showed low toxicity in the range of studied concentrations (3.125-100⯵g/ml) high stability of nanoparticle for 4 months (according to UV.spectroscopy data) the highest antibacterial activity against S. epidermidis (3.91⯵g/ml). The high antibacterial activity, stability, and simplicity of the process of producing AgNPs based on the QCG derivative reveals that a new method for producing modified AgNPs deserves future consideration.
RESUMEN
The hydrolytic and enzymatic degradation of polymer films of poly(3-hydroxybutyrate) (PHB) of different molecular mass and its copolymers with 3-hydroxyvalerate (PHBV) of different 3-hydroxyvalerate (3-HV) content and molecular mass, 3-hydroxy-4-methylvalerate (PHB4MV), and polyethylene glycol (PHBV-PEG) produced by the Azotobacter chroococcum 7B by controlled biosynthesis technique were studied under in vitro model conditions. The changes in the physicochemical properties of the polymers during their in vitro degradation in the pancreatic lipase solution and in phosphate-buffered saline for a long time (183 days) were investigated using different analytical techniques. A mathematical model was used to analyze the kinetics of hydrolytic degradation of poly(3-hydroxyaklannoate)s by not autocatalytic and autocatalytic hydrolysis mechanisms. It was also shown that the degree of crystallinity of some polymers changes differently during degradation in vitro. The total mass of the films decreased slightly up to 8-9% (for the high-molecular weight PHBV with the 3-HV content 17.6% and 9%), in contrast to the copolymer molecular mass, the decrease of which reached 80%. The contact angle for all copolymers after the enzymatic degradation decreased by an average value of 23% compared to 17% after the hydrolytic degradation. Young's modulus increased up to 2-fold. It was shown that the effect of autocatalysis was observed during enzymatic degradation, while autocatalysis was not available during hydrolytic degradation. During hydrolytic and enzymatic degradation in vitro, it was found that PHBV, containing 5.7-5.9 mol.% 3-HV and having about 50% crystallinity degree, presents critical content, beyond which the structural and mechanical properties of the copolymer have essentially changed. The obtained results could be applicable to biomedical polymer systems and food packaging materials.
RESUMEN
Over the past century there was a significant development and extensive application of biodegradable and biocompatible polymers for their biomedical applications. This research investigates the dynamic change in properties of biodegradable polymers: poly(3-hydroxybutyrate (PHB), poly-l-lactide (PLA), and their 50:50 blend (PHB/PLA)) during their hydrolytic non-enzymatic (in phosphate buffered saline (PBS), at pH = 7.4, 37 °C) and enzymatic degradation (in PBS supplemented with 0.25 mg/mL pancreatic lipase). 3T3 fibroblast proliferation on the polymer films experiencing different degradation durations was also studied. Enzymatic degradation significantly accelerated the degradation rate of polymers compared to non-enzymatic hydrolytic degradation, whereas the seeding of 3T3 cells on the polymer films accelerated only the PLA molecular weight loss. Surprisingly, the immiscible nature of PHB/PLA blend (showed by differential scanning calorimetry) led to a slower and more uniform enzymatic degradation in comparison with pure polymers, PHB and PLA, which displayed a two-stage degradation process. PHB/PLA blend also displayed relatively stable cell viability on films upon exposure to degradation of different durations, which was associated with the uneven distribution of cells on polymer films. Thus, the obtained data are of great benefit for designing biodegradable scaffolds based on polymer blends for tissue engineering.