Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Indian J Crit Care Med ; 25(4): 453-460, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34045813

RESUMEN

Among the various strategies for the prevention of airborne transmission, engineering measures are placed high in the hierarchy of control. Modern hospitals in high-income countries have mechanical systems of building ventilation also called HVAC (heating, ventilation, and air-conditioning) but installation and maintenance of such systems is a challenging and resource-intensive task. Even when the state-of-the-art technology was used to build airborne infection isolation rooms (AIIRs), recommended standards were often not met in field studies. The current coronavirus disease-2019 pandemic has highlighted the need to find cost-effective and less resource-intensive engineering solutions. Moreover, there is a need for the involvement of interdisciplinary teams to find innovative infection control solutions and doctors are frequently lacking in their understanding of building ventilation-related problems as well as their possible solutions. The current article describes building ventilation strategies (natural ventilation and hybrid ventilation) for hospitals where HVAC systems are either lacking or do not meet the recommended standards. Other measures like the use of portable air cleaning technologies and temporary negative-pressure rooms can be used as supplementary strategies in situations of demand surge. It can be easily understood that thermal comfort is compromised in buildings that are not mechanically fitted with HVAC systems, therefore the given building ventilation strategies are more helpful when climatic conditions are moderate or other measures are combined to maintain thermal comfort. HOW TO CITE THIS ARTICLE: Zia H, Singh R, Seth M, Ahmed A, Azim A. Engineering Solutions for Preventing Airborne Transmission in Hospitals with Resource Limitation and Demand Surge. Indian J Crit Care Med 2021;25(4):453-460.

2.
Environ Sci Pollut Res Int ; 30(37): 86892-86910, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37414994

RESUMEN

The thermal properties of the urban landscape are significantly affected by various human activities such as changing land use patterns, the construction of buildings and other impervious surfaces, and the development of transport systems. Urbanization often leads to the replacement of natural landscapes with impervious surfaces such as concrete and asphalt, which have a higher heat absorption capacity and lower emissivity. The continuous displacement of urban landscapes by impermeable surfaces therefore leads to an increase in urban temperatures, ultimately causing the development of the urban heat island (UHI) phenomenon. The study aims to analyze the thermal properties of physical elements in residential streets of Gurugram City using a thermal imaging camera to investigate the relationship between ambient air temperature and thermal behavior of surface materials. The study shows that the compact streets are 2-4 °C cooler than the open streets due to mutual shading of the buildings. Similarly, the temperature in the light-colored buildings is 1.5-4 °C lower than the dark buildings in the streets. In addition, a simple coat of paint over a plastered wall is much cooler than granite stone wall cladding. The study also showed how shading, whether by mutual shading or vegetative shading, can lower the surface temperature of urban materials. Building codes and design guidelines can therefore use such studies to make urban exteriors more pleasant by recommending lighter colors, plants, and local materials.


Asunto(s)
Calor , Urbanización , Humanos , Ciudades , Temperatura , India
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda