Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Neurosurg Rev ; 46(1): 206, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37596512

RESUMEN

Early and reliable prediction of shunt-dependent hydrocephalus (SDHC) after aneurysmal subarachnoid hemorrhage (aSAH) may decrease the duration of in-hospital stay and reduce the risk of catheter-associated meningitis. Machine learning (ML) may improve predictions of SDHC in comparison to traditional non-ML methods. ML models were trained for CHESS and SDASH and two combined individual feature sets with clinical, radiographic, and laboratory variables. Seven different algorithms were used including three types of generalized linear models (GLM) as well as a tree boosting (CatBoost) algorithm, a Naive Bayes (NB) classifier, and a multilayer perceptron (MLP) artificial neural net. The discrimination of the area under the curve (AUC) was classified (0.7 ≤ AUC < 0.8, acceptable; 0.8 ≤ AUC < 0.9, excellent; AUC ≥ 0.9, outstanding). Of the 292 patients included with aSAH, 28.8% (n = 84) developed SDHC. Non-ML-based prediction of SDHC produced an acceptable performance with AUC values of 0.77 (CHESS) and 0.78 (SDASH). Using combined feature sets with more complex variables included than those incorporated in the scores, the ML models NB and MLP reached excellent performances, with an AUC of 0.80, respectively. After adding the amount of CSF drained within the first 14 days as a late feature to ML-based prediction, excellent performances were reached in the MLP (AUC 0.81), NB (AUC 0.80), and tree boosting model (AUC 0.81). ML models may enable clinicians to reliably predict the risk of SDHC after aSAH based exclusively on admission data. Future ML models may help optimize the management of SDHC in aSAH by avoiding delays in clinical decision-making.


Asunto(s)
Hidrocefalia , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/cirugía , Teorema de Bayes , Algoritmos , Hidrocefalia/etiología , Hidrocefalia/cirugía , Aprendizaje Automático
2.
Neurosurg Rev ; 44(5): 2837-2846, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33474607

RESUMEN

Reliable prediction of outcomes of aneurysmal subarachnoid hemorrhage (aSAH) based on factors available at patient admission may support responsible allocation of resources as well as treatment decisions. Radiographic and clinical scoring systems may help clinicians estimate disease severity, but their predictive value is limited, especially in devising treatment strategies. In this study, we aimed to examine whether a machine learning (ML) approach using variables available on admission may improve outcome prediction in aSAH compared to established scoring systems. Combined clinical and radiographic features as well as standard scores (Hunt & Hess, WFNS, BNI, Fisher, and VASOGRADE) available on patient admission were analyzed using a consecutive single-center database of patients that presented with aSAH (n = 388). Different ML models (seven algorithms including three types of traditional generalized linear models, as well as a tree bosting algorithm, a support vector machine classifier (SVMC), a Naive Bayes (NB) classifier, and a multilayer perceptron (MLP) artificial neural net) were trained for single features, scores, and combined features with a random split into training and test sets (4:1 ratio), ten-fold cross-validation, and 50 shuffles. For combined features, feature importance was calculated. There was no difference in performance between traditional and other ML applications using traditional clinico-radiographic features. Also, no relevant difference was identified between a combined set of clinico-radiological features available on admission (highest AUC 0.78, tree boosting) and the best performing clinical score GCS (highest AUC 0.76, tree boosting). GCS and age were the most important variables for the feature combination. In this cohort of patients with aSAH, the performance of functional outcome prediction by machine learning techniques was comparable to traditional methods and established clinical scores. Future work is necessary to examine input variables other than traditional clinico-radiographic features and to evaluate whether a higher performance for outcome prediction in aSAH can be achieved.


Asunto(s)
Hemorragia Subaracnoidea , Teorema de Bayes , Humanos , Aprendizaje Automático , Pronóstico , Radiografía , Hemorragia Subaracnoidea/diagnóstico por imagen
3.
Front Neurol ; 13: 737667, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693017

RESUMEN

Background and Purpose: Outcome prediction after mechanical thrombectomy (MT) in patients with acute ischemic stroke (AIS) and large vessel occlusion (LVO) is commonly performed by focusing on favorable outcome (modified Rankin Scale, mRS 0-2) after 3 months but poor outcome representing severe disability and mortality (mRS 5 and 6) might be of equal importance for clinical decision-making. Methods: We retrospectively analyzed patients with AIS and LVO undergoing MT from 2009 to 2018. Prognostic variables were grouped in baseline clinical (A), MRI-derived variables including mismatch [apparent diffusion coefficient (ADC) and time-to-maximum (Tmax) lesion volume] (B), and variables reflecting speed and extent of reperfusion (C) [modified treatment in cerebral ischemia (mTICI) score and time from onset to mTICI]. Three different scenarios were analyzed: (1) baseline clinical parameters only, (2) baseline clinical and MRI-derived parameters, and (3) all baseline clinical, imaging-derived, and reperfusion-associated parameters. For each scenario, we assessed prediction for favorable and poor outcome with seven different machine learning algorithms. Results: In 210 patients, prediction of favorable outcome was improved after including speed and extent of recanalization [highest area under the curve (AUC) 0.73] compared to using baseline clinical variables only (highest AUC 0.67). Prediction of poor outcome remained stable by using baseline clinical variables only (highest AUC 0.71) and did not improve further by additional variables. Prediction of favorable and poor outcomes was not improved by adding MR-mismatch variables. Most important baseline clinical variables for both outcomes were age, National Institutes of Health Stroke Scale, and premorbid mRS. Conclusions: Our results suggest that a prediction of poor outcome after AIS and MT could be made based on clinical baseline variables only. Speed and extent of MT did improve prediction for a favorable outcome but is not relevant for poor outcome. An MR mismatch with small ischemic core and larger penumbral tissue showed no predictive importance.

4.
PLoS One ; 15(4): e0231166, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32251471

RESUMEN

State-of-the-art machine learning (ML) artificial intelligence methods are increasingly leveraged in clinical predictive modeling to provide clinical decision support systems to physicians. Modern ML approaches such as artificial neural networks (ANNs) and tree boosting often perform better than more traditional methods like logistic regression. On the other hand, these modern methods yield a limited understanding of the resulting predictions. However, in the medical domain, understanding of applied models is essential, in particular, when informing clinical decision support. Thus, in recent years, interpretability methods for modern ML methods have emerged to potentially allow explainable predictions paired with high performance. To our knowledge, we present in this work the first explainability comparison of two modern ML methods, tree boosting and multilayer perceptrons (MLPs), to traditional logistic regression methods using a stroke outcome prediction paradigm. Here, we used clinical features to predict a dichotomized 90 days post-stroke modified Rankin Scale (mRS) score. For interpretability, we evaluated clinical features' importance with regard to predictions using deep Taylor decomposition for MLP, Shapley values for tree boosting and model coefficients for logistic regression. With regard to performance as measured by Area under the Curve (AUC) values on the test dataset, all models performed comparably: Logistic regression AUCs were 0.83, 0.83, 0.81 for three different regularization schemes; tree boosting AUC was 0.81; MLP AUC was 0.83. Importantly, the interpretability analysis demonstrated consistent results across models by rating age and stroke severity consecutively amongst the most important predictive features. For less important features, some differences were observed between the methods. Our analysis suggests that modern machine learning methods can provide explainability which is compatible with domain knowledge interpretation and traditional method rankings. Future work should focus on replication of these findings in other datasets and further testing of different explainability methods.


Asunto(s)
Toma de Decisiones Clínicas/métodos , Accidente Cerebrovascular/diagnóstico , Aprendizaje Automático Supervisado/tendencias , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Femenino , Predicción , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación , Evaluación de Resultado en la Atención de Salud , Pronóstico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda