RESUMEN
Terahertz pulsed imaging is a spectroscopic imaging modality using pulses of electromagnetic radiation (100 GHz-10 THz), and there has been recent interest in studying biomedical specimens. It is usual to display parametric images derived from the measured pulses. In this work, classification was achieved by applying multispectral clustering techniques to sets of parametric images. It was hypothesised that adequate information for clustering was carried in a small number of parametric images, providing these were weighted by complementary physical properties. Materials prepared for histopathological examination were chosen because their condition remained stable during long imaging periods and because their dehydrated state led to greater penetration of the radiation. Two specimens were examined in this pilot study, one of basal cell carcinoma and one of melanoma. Unsupervised ISODATA classification using three selected parametric terahertz pulsed images was compared qualitatively with k-means classification using the shape of the whole time series, and with conventional stained microscope slides. There was good qualitative agreement between the classifications. Classifications were consistent with the morphological appearances expected, but further work is required to determine if tumour discrimination is possible. The results have implications for the future development of the technique as the need for only a small number of features could lead to considerably reduced acquisition times.
Asunto(s)
Algoritmos , Carcinoma Basocelular/patología , Diagnóstico por Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Melanoma/patología , Microondas , Neoplasias Cutáneas/patología , Fenómenos Electromagnéticos/métodos , Estudios de Factibilidad , Humanos , Proyectos Piloto , Radiación no Ionizante , Análisis Espectral/métodosRESUMEN
We report on the theoretical calculations considering collinear electromagnetic radiation at the propagation of an optical pulse through a slab of nonlinear material. Calculated waveforms of the radiated field fit well to the experimental dependencies showing the remarkable similarities between the radiation at nonlinear wave interaction and the radiation phenomena of moving external charges, similarly to discussed in the Tamm Problem and transition radiation of moving external charges.
RESUMEN
Recently published studies suggest thatterahertz pulsed imaging will have applications inmedicine and biology, but there iscurrently very little information about the opticalproperties of human tissue at terahertzfrequencies. Such information would be useful forpredicting the feasibility of proposedapplications, optimising acquisition protocols,providing information about variability ofhealthy tissue and supplying data for studies of theinteraction mechanisms. Research ethicscommittee approval was obtained, andmeasurements made from samples of freshlyexcised human tissue, using a broadbandterahertz pulsed imaging system comprisingfrequencies approximately 0.5 to 2.5 THz.Refractive index and linear absorptioncoefficient were found. Reproducibility wasdetermined using blood from one volunteer,which was drawn and measured on consecutivedays. Skin, adipose tissue, striatedmuscle, vein and nerve were measured (to date, from oneindividual). Water had a higher refractiveindex (2.04 ± 0.07) than any tissue.The linear absorption coefficient was higher formuscle than adipose tissue, as expectedfrom the higher hydration of muscle. As these samples camefrom a single subject, there is currentlyinsufficient statistical power to draw firmconclusions, but results suggest that in vivo clinical imaging will be feasible in certainapplications.
RESUMEN
Modelling the interaction of terahertz(THz) radiation with biological tissueposes many interesting problems. THzradiation is neither obviously described byan electric field distribution or anensemble of photons and biological tissueis an inhomogeneous medium with anelectronic permittivity that is bothspatially and frequency dependent making ita complex system to model.A three-layer system of parallel-sidedslabs has been used as the system throughwhich the passage of THz radiation has beensimulated. Two modelling approaches havebeen developed a thin film matrix model anda Monte Carlo model. The source data foreach of these methods, taken at the sametime as the data recorded to experimentallyverify them, was a THz spectrum that hadpassed though air only.Experimental verification of these twomodels was carried out using athree-layered in vitro phantom. Simulatedtransmission spectrum data was compared toexperimental transmission spectrum datafirst to determine and then to compare theaccuracy of the two methods. Goodagreement was found, with typical resultshaving a correlation coefficient of 0.90for the thin film matrix model and 0.78 forthe Monte Carlo model over the full THzspectrum. Further work is underway toimprove the models above 1 THz.