Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
R Soc Open Sci ; 10(2): 221452, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36844806

RESUMEN

The origin of jaws and teeth remains contentious in vertebrate evolution. 'Placoderms' (Silurian-Devonian armoured jawed fishes) are central to debates on the origins of these anatomical structures. 'Acanthothoracids' are generally considered the most primitive 'placoderms'. However, they are so far known mainly from disarticulated skeletal elements that are typically incomplete. The structure of the jaws-particularly the jaw hinge-is poorly known, leaving open questions about their jaw function and comparison with other placoderms and modern gnathostomes. Here we describe a near-complete 'acanthothoracid' upper jaw, allowing us to reconstruct the likely orientation and angle of the bite and compare its morphology with that of other known 'placoderm' groups. We clarify that the bite position is located on the upper jaw cartilage rather than on the dermal cheek and thus show that there is a highly conserved bite morphology among most groups of 'placoderms', regardless of their overall cranial geometry. Incorporation of the dermal skeleton appears to provide a sound biomechanical basis for jaw origins. It appears that 'acanthothoracid' dentitions were fundamentally similar in location to that of arthrodire 'placoderms', rather than resembling bony fishes. Irrespective of current phylogenetic uncertainty, the new data here resolve the likely general condition for 'placoderms' as a whole, and as such, ancestral morphology of known jawed vertebrates.

2.
Nat Ecol Evol ; 4(11): 1477-1484, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32895518

RESUMEN

Endochondral bone is the main internal skeletal tissue of nearly all osteichthyans-the group comprising more than 60,000 living species of bony fishes and tetrapods. Chondrichthyans (sharks and their kin) are the living sister group of osteichthyans and have primarily cartilaginous endoskeletons, long considered the ancestral condition for all jawed vertebrates (gnathostomes). The absence of bone in modern jawless fishes and the absence of endochondral ossification in early fossil gnathostomes appear to lend support to this conclusion. Here we report the discovery of extensive endochondral bone in Minjinia turgenensis, a new genus and species of 'placoderm'-like fish from the Early Devonian (Pragian) of western Mongolia described using X-ray computed microtomography. The fossil consists of a partial skull roof and braincase with anatomical details providing strong evidence of placement in the gnathostome stem group. However, its endochondral space is filled with an extensive network of fine trabeculae resembling the endochondral bone of osteichthyans. Phylogenetic analyses place this new taxon as a proximate sister group of the gnathostome crown. These results provide direct support for theories of generalized bone loss in chondrichthyans. Furthermore, they revive theories of a phylogenetically deeper origin of endochondral bone and its absence in chondrichthyans as a secondary condition.


Asunto(s)
Fósiles , Maxilares , Animales , Maxilares/anatomía & histología , Mongolia , Filogenia , Cráneo/anatomía & histología , Cráneo/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda